Теорема гаусса для напряженности сферы. Московский государственный университет печати

Поток напряженности электрического поля, проходящий через замкнутую поверхность, пропорционален суммарному электрическому заряду, содержащемуся внутри этой поверхности.

В науке часто бывает, что один и тот же закон можно сформулировать по-разному. По большому счету, от формулировки закона ничего не меняется с точки зрения его действия, однако новая формулировка помогает теоретикам несколько иначе интерпретировать закон и испытать его применительно к новым природным явлениям. Именно такой случай мы и наблюдаем с теоремой Гаусса, которая, по существу, является обобщением закона Кулона , который, в свою очередь, явился обобщением всего, что ученые знали об электростатических зарядах на момент, когда он был сформулирован.

Вообще говоря, в математике, физике и астрономии найдется немного областей, развитию которых не посодействовал замечательный гений Карла Фридриха Гаусса. В 1831 году он вместе со своим молодым коллегой Вильгельмом Вебером (Wilhelm Weber, 1804–1891) занялся изучением электричества и магнетизма и вскоре сформулировал и доказал теорему, названную его именем. Чтобы понять, в чем заключается ее смысл, представьте себе изолированный точечный электрический заряд q . А теперь представьте, что он окружен замкнутой поверхностью. Форма поверхности в теореме не важна - это может быть пусть даже сдутый воздушный шарик. В каждой точке окружающей заряд поверхности, однако, наблюдается электрическое поле, образованное зарядом, а произведение напряженности этого электрического поля на сколь угодно малую единицу площади окружающей заряд поверхности, через которую проходят силовые линии поля, называется потоком напряженности электрического поля , и можно рассчитать поток напряженности, приходящийся на каждый элемент поверхности . Теорема Гаусса как раз и гласит, что суммарный поток напряженности электрического поля, проходящий через окружающую заряд поверхность, пропорционален величине заряда.

Связь между законом Кулона и теоремой Гаусса станет очевидной на простом примере. Предположим, что заряд q окружен сферой радиуса r . На удалении r от заряда напряженность электрического поля, которая определяется силой притяжения или отталкивания единичного заряда, помещенного в соответствующую точку, составит, согласно закону Кулона:

И то же самое значение мы получим для любой точки сферы заданного радиуса. Следовательно, суммарный поток напряженности электрического поля будет равен значению напряженности поля на удалении r от заряда, помноженному на площадь сферы (которая, как известно, равняется 4πr 2). Иными словами, суммарный поток будет равен:

4πr 2 × kq/r 2 = 4πkq

Это и есть теорема Гаусса.

Интересное следствие из нее получается, если применить эту теорему к сплошному металлу. Представьте себе цельнометаллический предмет и воображаемую замкнутую поверхность внутри него. Полный электрический заряд внутри такой поверхности будет нулевым, поскольку внутри окажется равное число положительных и отрицательных зарядов - протонов атомных ядер и электронов соответственно. Следовательно, поток напряженности электрического поля, проходящий через такую замкнутую поверхность, также будет равен нулю. Поскольку это верно для любой замкнутой поверхности внутри металла, это означает, что внутри металла не существует и не может существовать электрического поля.

Это свойство металлов часто используется экспериментаторами и инженерами-связистами для защиты высокочувствительных приборов от наведенных извне электрических помех. Обычно прибор просто окружается защитным медным экраном. Согласно теореме Гаусса, внешние электрические поля просто не в состоянии проникнуть внутрь такой оболочки и создать помехи работе прибора.

Другое интересное следствие теоремы Гаусса заключается в том, что если в дороге вас застала гроза, самое безопасное для вас - не выходить из машины, поскольку там вы окружены цельнометаллическим экраном. Даже если в ваш автомобиль ударит молния, внутри вам ничего не будет угрожать, поскольку весь разряд пройдет по корпусу и уйдет в землю. Резина, скорее всего, сгорит, зато сами вы останетесь в целости и сохранности.

В ряде случаев теорема Гаусса позволяет найти напряженность электрического поля протяженных заряженных тел, не прибегая к вычислению громоздких интегралов. Обычно это относится к телам, чья геометрическая форма обладает определенными элементами симметрии (шар, цилиндр, плоскость). Рассмотрим некоторые примеры применения теоремы Гаусса для расчета напряженности электрических полей.

Пример 1 . Поле равномерно заряженной плоскости.

Электрическое поле, создаваемое бесконечно протяженной равномерно заряженной плоскостью, является однородным – в каждой точке пространства вне плоскости его напряженность всюду одинакова. Направлено это поле перпендикулярно к плоскости в обе стороны (рис.2.5). Поэтому для потока вектора напряженности поля через произвольно выбранную цилиндрическую поверхность, опирающуюся на элемент плоскости ΔS, можем написать: , откуда , где - поверхностная плотность заряда. Размерность в СИ: .

Таким образом, искомая напряженность электрического поля равномернозаряженной плоскости .

Пример 2 . Поле равномерно заряженной нити (цилиндра).

В данном случае электрическое поле обладает аксиальной симметрией – не зависит от азимутального угла φ и координаты z и направлено вдоль радиус-вектора (рис.2.6). Поэтому для потока вектора через выбранную цилиндрическую поверхность с осью, совпадающей с заряженной нитью, имеем: , где - элемент цилиндрической поверхности; l – длина произвольного участка нити.

С другой стороны, по теореме Гаусса этот поток равен: причем , - линейная плотность заряда нити. Отсюда находим: .

Искомая напряженность электрического поля равномерно заряженной нити : .

Пример 3 . Поле равномерно заряженного шара.



а) Металлический шар . При равновесии заряды равномерно распределяются по внешней поверхности заряженного шара (рис.2.7). Поэтому при < (внутри шара) электрическое поле отсутствует: .

Вне шара ( > ) электрическое поле, созданное равномерно распределенными по его поверхности зарядами, обладает сферической симметрией (направлено по радиальным линиям), поэтому, согласно теореме Гаусса:

.

Видим, что электрическое поле равномерно заряженного металлического шара не зависит от радиуса шара и совпадает с полем точечного заряда .

б) Диэлектрический шар .

Рассмотрим шар, с условной диэлектрической проницаемостью ε = 1, равномерно заряженный по объему с плотностью заряда (рис.2.8).

Размерность объемной плотности заряда в СИ: .

Полный заряд шара, очевидно, есть: .

Имеем по теореме Гаусса:

1) Внутри шара (r < R) : , где Δq = - заряд внутренней области шара, ограниченной выбранной сферической поверхностью радиуса r . Отсюда находим: .

2) Вне шара (r > R) : , откуда = ,

то есть вне заряженного диэлектрического шара электрическое поле такое же , как и в случае металлического шара.

На рис.2.9 показан качественный ход зависимостей E(r) для металлического и диэлектрического шаров.

металл Рис.2.9 . Зависимость E(r). диэлектрик

1.4 Теорема Гаусса. Вектор электрической индукции.

Теорема Гаусса.

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя теорему Гаусса, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность .

Рассмотрим поток вектора напряженности через сферическую поверхность радиуса r , охватывающую точечный заряд q , находящийся в ее центре

Этот результат справедлив для любой замкнутой поверхности произвольной формы ,охватывающей заряд.

Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю ,так как число линий напряженности,входящих в поверхность,равно числу линий напряженности, выходящих из нее.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов .Согласно принципу суперпозиции напряженностьполя ,создаваемого всеми зарядами, равна сумме напряженностей , создаваемых каждым зарядом в отдельности. Поэтому

Теорема Гаусса для электростатического поля в вакууме :потоквектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0 .

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .

Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие заряженных тел.

Закон Кулона :сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 прямопропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния r между ними:

Где (e 0 – электрическая постоянная);

e – диэлектрическая проницаемость среды, показывающая во сколько раз сила взаимодействия зарядов в данной среде меньше, чем в вакууме.

Элект­рические поля, которые создаются неподвижными электрическими зарядами, называ­ются электростатическими .

Напряженность электростатического поля в данной точке есть физическая величина , определяемая силой, действующей на пробный точечный положительный заряд q 0 , помещенный в эту точку поля, то есть:

Электростатическое поле может быть изображено графически с помощьюсиловых линий .Силовая линия - это такая линия, касательная в каждой точке к которой совпадает по направлению с вектором напряженности электростатическго поля в данной точке (рис. 1, 2).

Если поле создается точечным зарядом, то силовые линии – это радиальные прямые, выходящие из положительного заряда (рис. 2, а ), и входя­щие в отрицательный заряд (рис. 2, б ).

Рис. 1 Рис. 2

С помощью силовых линий можно характеризовать не только направление, но и величину напряженности электростатического поля, связывая ей с густотой силовых линий. Большей густоте силовых линий соответствует большая величина напряженности (рис. 1, 2). Количественно числу силовых линий, прони­зывающих единичную площадку, расположенную перпендикулярно силовым линиям, ставится в соответствие величина напряженности электростатического поля. В этом случае определенному заряду q , создающему поле, соответствует определенное число N силовых линий, выходящих (для ) из заряда или входящих (для ) в заряд, а именно: .

Поток вектора напряженности электростатического поля через произвольную площадку S характкризуется числом силовых линий, пронизывающих данную площадку S.

Если площадка S перпендикулярна силовым линиям (рис. 3), то поток Ф Е вектора напряженности через данную площадку S : .

Рис. 3 Рис. 4

Рис. 3
Если же площадка S расположена неперпендикулярно силовым линиям электро-статического поля (рис. 4), то поток вектора через данную площадку S :

,

где α – угол между векторами напряженности и нормали к площадке S .

Для того, чтобы найти поток Ф Е вектора напряженности через произвольную поверхность S , необходиморазбить эту поверхность на элементарные площадки dS (рис. 5),определить элементарный поток dФ Е через каждую площадку dS по формуле:

,

а затем все эти элементарные потоки dФ Е сложить, что приводит к интегрированию:

,

где α – угол между векторами напряженности и нормали к данной элементарной площадке dS .

Если ввести вектор (рис. 5) как вектор, равный по величине площади площадки dS и направленный по вектору нормали к площадке dS , то величина , где a – угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для потока вектора примет вид:

.

Теорема Остроградского - Гаусса для электростатического поля.

Теорема Остроградского - Гаусса для электростатического поля связывает между собой величину потока Ф Е вектора напряженности электростатического поля в вакууме через произвольную замкнутую поверхность S с величинойзаряда q , заключенного внутри данной замкнутой поверхности S (рис. 6).

Рис. 6
Поскольку все силовые линии, выходящие из заряда (для ) или входящие в заряд (для ), пронизываютпроизвольную замкнутую поверхность S , охватывающую этот заряд (рис. 6), то величина потока Ф Е вектора через эту поверхность S будет определяться числом N силовых линий выходящих из заряда (для ) или входящих в заряд (для ):

.

Это соотношение есть теорема Остроградского-Гаусса для электростатического поля.

Таккак поток считается положитель­ным, если силовые линии выходят из поверхности S , и отрицательным для линий, входящих в поверхность S, то в случае, если внутри произвольной замкнутой поверхности S находится не один, а несколько (n ) разноименных зарялов, то теорема Остроградского - Гаусса для электростатического поля формулируется следующим образом:

поток вектора напряженности электростатического поля в вакууме через произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 :

.

Тема 2. Работа сил электростатического поля. Потенциал

Если в электростатическом поле, создаваемом точечным зарядом q , перемещается другой пробный заряд q 0 из точки 1 в точку 2 вдоль произвольной траектории (рис. 7), то при этом совершается работа сил электростатического поля.

Элементарная работа dA силы на элементарном перемещении равна: .

Из рисунка 7 видно, что .

Тогда ().

Работа А при перемещении заряда q 0 вдоль траектории от точки 1 до точки 2 :

То есть работа при перемещении заряда из точки 1 в

точку 2 в электростатическом поле не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек. Поэтому электростатическое поле точечного заряда является потенциальным .

Работа, совершаемая силами электростатического поля при перемещении заряда q 0 из точки 1 в точку 2 , выражается следующим образом:

,

где φ 1 и φ 2 потенциалы электростатического поля в точках 1 и 2 .

Потенциал электростатического поля определяется с точностью до произвольной аддитивной постоянной С , то есть для поля точечного заряда q :

.

Тогда , .

Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами электростатического поля, при перемещении пробного точечного заряда q 0 из точки 1 в точку 2 :

.

Связь между напряженностью и потенциалом электростатического поля

Напряженность и потенциал φ электростатического поля связаны между собой следующим образом:

= – grad φ

или , где

– единичные векторы координатных осей Ох , Оy , Оz , соответственно.

Знак минус в приведенной формуле означает, что вектор напряженности электростатического поля направлен в сторону максимального убывания потенциала j .

Для графического изображения распределения потенциала электростатического поля используютсяэквипотенциальные поверхности, то естьповерхности, во всех точках которых потенциал j имеет одно и то же значение.

Например, для поля, созданного точечным зарядом q , потенциал j определяется выражением: , а эквипотенциальными поверхностями являются кон­центрические сферы (рис. 8).

Из этого рисунка видно, что в случае точечного заряда силовые линии поля (штриховые линии на рисунке) нормальны (перпендикулярны) к эквипотенциальным поверхностям (сплошные линии на рисунке).

Это свойство нормального взаимного расположения силовых линий и эквипотенциальных поверхностей электростатического поля является общим для любых случаев электростатического поля.

Таким образом, зная расположение силовый линий электростатического поля, можно построить эквипотенциальные поверхности этого электростатического поля и, наоборот, по известному расположению эквипотенциальных поверхностей электростатического поля можно построить силовые линии электростатического поля.

Магнитное поле

Тема 3. Магнитное поле. Закон Био-Савара-Лапласа

Электрический ток создает поле, действующее на магнитную стрелку. Стрелка ориентируется по касательной к окружности, лежащей в плоскости, перпендикуляной к проводнику с током (рис. 9).

Основной характеристикой магнитного поля является вектор индукция . Принято, что вектор индукция магнитного поля направлен в сторону север-ного полюса магнитной стрелки, помещенной в данную точку поля (рис. 9).

По аналогии с электрическим полем, магнитное поле также может быть изображено графически с помощью силовых линий (линий индукции магнитного поля ).

Силовая линия – это такая линия, касательная к которой в каждой точке совпадает по направлению с вектором индукции магнитного поля. Силовые линии магнитного поля, в отличие от силовых линий электростатического поля, являются замкнутыми и охватывают проводники с током. Направление силовых линий задается правилом правого винта (правилом буравчика): головка винта, ввинчиваемого по направлению тока, враща­ется в направлении линий Рис. 9

магнитной индукции (рис. 9).

Для нескольких источников магнитного поля согласно принципу суперпозиции магнитных полей индукция результирующего магнитного поля равна векторной сумме индукций всех отдельных магнитных полей:

Вектор индукции магнитного поля, создаваемого проводником с током , можно определить с помощью закона Био-Савара-Лапласа. При этомнеобходимо учесть то, что закон Био-Савара-Лапласа позволяет найти модуль и направление лишьвектора индукции магнитного поля, создаваемого элементом проводника с током . Поэтому для определения вектора индукции магнитного поля, создаваемого проводником с током , необходимо первоначально разбить этот проводник на элементы проводника , для каждого элемента с помощью закона Био-Савара-Лапласа найти вектор индукции , а затем, используя принцип суперпозиции магнитных полей, сложить векторно все найденные вектора индукции .

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS . Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 1.3.1):

Рассмотрим теперь некоторую произвольную замкнутую поверхность S . Если разбить эту поверхность на малые площадки ΔS i , определить элементарные потоки ΔΦi поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 1.3.2):

В случае замкнутой поверхности всегда выбирается внешняя нормаль .

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Для доказательства рассмотрим сначала сферическую поверхность S , в центре которой находится точечный заряд q . Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю

где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR 2 . Следовательно,

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R 0 (рис. 1.3.3).

Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS 0 , а на поверхности S – площадку ΔS . Элементарные потоки ΔΦ 0 и ΔΦ через эти площадки одинаковы. Действительно,

ΔΦ 0 = E 0 ΔS 0 , ΔΦ = E ΔS cos α = E ΔS .

Здесь ΔS’ = ΔS cos α – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса n .

Так как , a , следовательно Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q , то поток Φ = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φi электрических полей отдельных зарядов. Если заряд q i оказался внутри поверхности S , то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R . Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1.3.4).

При r R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl , так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r < R . В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен Φ = E rl . Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда , т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.

Вверх