Зависимость сопротивления от параметров проводника и температуры. Как зависит сопротивление проводника от температуры
Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.
Металлы
Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.
- Металлическая проволока
- Батарея
- Амперметр
Зависимость указывается и обосновывается формулами:
Из этих формул следует, что R проводника определяется по формуле:
Пример зависимости сопротивления металлов от температуры предоставлен на видео:
Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.
Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.
Газы
Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.
Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.
Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.
Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ. Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим. Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.
Если приложить напряжение между катодом и анодом, то возникает проводимость газов.
Жидкости
Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.
- Электролит
- Батарея
- Амперметр
Зависимость воздействия электролитов от нагревания прописывает формула:
Где а – отрицательный температурный коэффициент.
Как зависит R от нагрева (t) показано на графике ниже:
Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.
Полупроводники
А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.
Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.
Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:
- если температура элемента меньше нуля, то такие проводники используются в качестве реле;
- чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.
Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.
Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том, .
Такое устройство носит название термопары. Термоэлементы применяются как источники тока малой мощности, а также для измерения температур цифрового вычислительного прибора, у которых размеры должны быть маленькие, а показания точные.
Подробнее о полупроводниках, и влияние нагрева на их сопротивление рассказывается на видео:
Ну и последнее, о чем хотелось бы рассказать — холодильники и полупроводниковые нагреватели. Полупроводниковые спаи обеспечивают в конструкции разность температур до шестидесяти градусов. Благодаря этому и был сконструирован холодильный шкаф. Температура охлаждения в такой камере достигает – 16 градусов. В основу работы элементов лежит применение термоэлементов, через которые проходит электрический ток.
Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что
- возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
- изменяется их концентрация при нагревании проводника.
Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:
где - удельные сопротивления вещества проводника соответственно при 0°С и t°C; R 0 , R t - сопротивления проводника при 0°С и t°С, - температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.
Вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.
где - среднее значение температурного коэффициента сопротивления в интервале .
Для всех металлических проводников > 0 и слабо изменяется с изменением температуры. У чистых металлов = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.
Для растворов электролитов 0, например, для 10%-ного раствора поваренной соли = -0,02 К -1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.
Формулы зависимости и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.
Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.
При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.
Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.
Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.
Вспомните, какую физическую величину называют сопротивлением.
От чего и как зависит сопротивление металлического проводника?
Различные вещества имеют разные удельные сопротивления (см. § 101). Зависит ли сопротивление от состояния проводника? от его температуры? Ответ должен дать опыт.
Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать её в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.
Если при температуре, равной 0 °С, сопротивление проводника равно R 0 , а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:
Коэффициент пропорциональности α называют температурным коэффициентом сопротивления.
Он характеризует зависимость сопротивления вещества от температуры.
Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов
При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счёт изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения Вычисления приводят к следующему результату:
ρ = ρ 0 (1 + αt), или ρ = ρ 0 (1 + αΔТ), (16.2)
где ΔТ - изменение абсолютной температуры.
Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решётки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения. Хотя коэффициент а довольно мал, учёт зависимости сопротивления от температуры при расчёте параметров нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока за счёт нагревания более чем в 10 раз.
У некоторых сплавов, например у сплава меди с никелем (Константин), температурный коэффициент сопротивления очень мал: α ≈ 10 -5 К -1 ; удельное сопротивление Константина велико: ρ ≈ 10 -6 Ом м. Такие сплавы используют для изготовления эталонных резисторов и добавочных резисторов к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.
Существуют и такие металлы, например никель, олово, платина и др., температурный коэффициент которых существенно больше: α ≈ 10 -3 К -1 . Зависимость их сопротивления от температуры можно использовать для измерения самой температуры, что и осуществляется в термометрах сопротивления .
На зависимости сопротивления от температуры основаны и приборы, изготовленные из полупроводниковых материалов, - термисторы . Для них характерны большой температурный коэффициент сопротивления (в десятки раз превышающий этот коэффициент у металлов), стабильность характеристик во времени. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм.
Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт.
Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр . Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.
Изменение сопротивления в зависимости от температуры
Пусть при температуре 0 градусов, сопротивление проводника равняется R0, а при температуре t сопротивление равно R, тогда относительное изменение сопротивления будет прямо пропорционально изменению температуры t:
- (R-R0)/R=a*t.
В данной формуле а - коэффициент пропорциональности, который называют еще температурным коэффициентом. Он характеризует зависимость сопротивления, которым обладает вещество, от температуры.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.
Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.
Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.
Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.
Зависимость удельного сопротивления проводника от температуры
Попытаемся найти зависимость удельного сопротивления проводника от температуры.
Подставим в полученную выше формулу значения сопротивлений R=p*l/S R0=p0*l/S.
Получим следующую формулу:
- p=p0(1+a*t).
Данная зависимость представлена на следующем рисунке.
Попробуем разобраться, почему увеличивается сопротивление
Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.
Сопротивление проводников зависит от вещества, из которого они из-готовлены, и их геометрических размеров
R = ρ . l / S,
где ρ — удельное сопротивление вещества, из которого изготовлен проводник; l —длина проводника; S — площадь попереч-ного сечения проводника.
Сопротивление проводников входит в за-кон Ома для однородного участка цепи I = U / R , из которого и может быть определено R = U / I .
Из последней формулы выходит, что со-противление проводника постоянно, посколь-ку, в соответствии с законом Ома, во сколь-ко раз увеличиваем напряжение на концах проводника, во столько же раз возрастает и сила тока в нем.
Но на практике можно наблюдать и дру-гие явления. Составим электрическую цепь, схема которой показана на рис. 7.2. В этой цепи есть источник тока с регулированным напряжением, электрическая лампа, напри-мер автомобильная, вольтметр и амперметр, показывающие напряжение на лампе и силу тока в ней. Устанавливаем на лампе напря-жение U 1 и отмечаем силу тока I 1 . Если теперь увеличить напряжение, например в 2 раза (U 2 = 2U 1), то по закону Ома и сила тока должна увеличиться в 2 раза (I 2 = 2I 1). Однако амперметр показывает силу тока значительно меньшую, чем 2I 1 . Следова-тельно, в данном случае закон Ома не вы-полняется.
Возникло несоответствие между вашими предшествующими знаниями и новым для вас фактом — закон Ома не всегда справед-лив. Такое несоответствие в науке назы-вается проблемой.
Проблема (гр. — задача, затруд-нение) — сложный теоретиче-ский или практический вопрос, требующий решения.
Можно высказывать разные предположе-ния, что является попыткой объяснить на-блюдаемое явление. Однако в ходе опыта бро-сается в глаза, что при увеличенном напря-жении лампа светится ярче, чем в первом слу-чае. Это является свидетельством того, что тем-пература спирали лампы во втором случае вы-ше, чем в первом. Возможно, именно измене-ние температуры является причиной изменения сопротивления металлической спирали лампы.
Как же можно проверить такое предпо-ложение (гипотезу)? Составляем электриче-скую цепь (рис. 7.3), в которой есть метал-лический проводник в виде спирали, на-пример пружинка от шариковой ручки, и устанавливаем в цепи ток определенной си-лы. Нагревая спираль в пламени свечи или спички, заметим:
при нагревании спирали и при постоянном напряжении сила тока в цепи уменьшается, что свидетельствует об увеличении сопротивления спирали при по-вышении ее температуры.
Тщательные исследования показывают, что сопротивление металлических проводников зависит от их температуры практически ли-нейно
R = R 0 (1 + α t°),
где R 0 — сопротивле-ние проводника при 0 °C или +20 °C (это удобнее для техники). График такой зави-симости представлен на рис. 7.4.
Если иметь в виду, что размеры металлов при нагревании изменяются мало, то со-ответствующую формулу можно записать и для удельного сопротивления металлических проводников
ρ = ρ 0 (1 + α t°).
Рассмотрим, что означает коэффициент в полученных формулах. Если при 0°C со-противление проводника R 0 , а при t° C со-противление его R, то относительное изме-нение сопротивления, как показывает эксперимент, (R — R 0) / R 0 = α t ° C. Материал с сайта
Коэффициент пропорциональности назы-вается температурным коэффициентом со-противления , который характеризует зави-симость сопротивления вещества от его тем-пературы.
Температурный коэффициент сопро-тивления равен относительному изменению сопротивления проводника при изменении его температуры на 1 К.
Для всех металлических проводников α > 0 и мало зависит от тем-пературы.
Почему же возрастает сопротивление ме-таллических проводников с повышением температуры? Дело в том, что при нагре-вании металла возрастает интенсивность ко-лебаний ионов кристаллической решетки и скорость хаотического движения электро-нов.
Электроны чаще сталкиваются с ионами, что и уменьшает скорость их направленного движения, которое и является электричес-ким током.
В технике зависимость сопротивления металлических проводников от температуры используется в термометрах сопротивления.
Датчик температуры (например, платиновая проволочка) устанавливается в тех точках, где необходимо измерять температуру, а его сопротивление измеряют омметром, шкала которого градуируется в единицах темпера-туры. Таких датчиков, при необходимости, может быть любое количество, а измери-тельный прибор — один.
На этой странице материал по темам:
График зависимости сопротивления от температуры в вакууме
Зависимость сопротивления от температуры для вакуума
Зависимость сопротивления в вакууме от температуры
Зависимость сопротивления металлических проводников от температуры
Зависимость сопротивления от температуры в вакууме график
Вопросы по этому материалу: