Чему равно r в химии. Радикал в химии – это что такое? Теория радикалов в химии

Химия – наука о составе, строении, свойствах и превращениях веществ.

Атомно-молекулярное учение. Вещества состоят из химических частиц (молекул, атомов, ионов), которые имеют сложное строение и состоят из элементарных частиц (протонов, нейтронов, электронов).

Атом – нейтральная частица, состоящая из положительного ядра и электронов.

Молекула – устойчивая группа атомов, связанных химическими связями.

Химический элемент – вид атомов с одинаковым зарядом ядра. Элемент обозначают

где X – символ элемента, Z – порядковый номер элемента в Периодической системе элементов Д.И. Менделеева, A – массовое число. Порядковый номер Z равен заряду ядра атома, числу протонов в ядре атома и числу электронов в атоме. Массовое число A равно сумме чисел протонов и нейтронов в атоме. Число нейтронов равно разности A – Z.

Изотопы – атомы одного элемента, имеющие разные массовые числа.

Относительная атомная масса (A r) – отношение средней массы атома элемента естественного изотопического состава к 1 / 12 массы атома изотопа углерода 12 С.

Относительная молекулярная масса (M r) – отношение средней массы молекулы вещества естественного изотопического состава к 1 / 12 части массы атома изотопа углерода 12 С.

Атомная единица массы (а.е.м) – 1 / 12 часть массы атома изотопа углерода 12 С. 1 а.е. м = 1,66 ? 10 -24 г.

Моль – количество вещества, содержащее столько структурных единиц (атомов, молекул, ионов), сколько содержится атомов в 0,012 кг изотопа углерода 12 С. Моль – количество вещества, содержащее 6,02 10 23 структурных единиц (атомов, молекул, ионов).

n = N/N A , где n – количество вещества (моль), N – число частиц, a N A – постоянная Авогадро. Количество вещества может обозначаться также и символом v.

Постоянная Авогадро N A = 6,02 10 23 частиц/моль.

Молярная масса M (г/моль) – отношение массы вещества m (г) к количеству вещества n (моль):

М = m/n, откуда: m = М n и n = m/М.

Молярный объем газа V M (л/моль) – отношение объема газа V (л) к количеству вещества этого газа n (моль). При нормальных условиях V M = 22,4 л/моль.

Нормальные условия: температура t = 0°C, или Т = 273 К, давление р = 1 атм = 760 мм. рт. ст. = 101 325 Па = 101,325 кПа.

V M = V/n, откуда: V = V M n и n = V/V M .

В результате получается общая формула:

n = m/M = V/V M = N/N A .

Эквивалент – реальная или условная частица, взаимодействующая с одним атомом водорода, или замещающая его, или эквивалентная ему каким-либо другим способом.

Молярная масса эквивалентов М э – отношение массы вещества к количеству эквивалентов этого вещества: М э = m/n (экв ) .

В реакциях обмена зарядов молярная масса эквивалентов вещества

с молярной массой М равна: М э = М/(n ? m).

В окислительно-восстановительных реакциях молярная масса эквивалентов вещества с молярной массой М равна: М э = М/n(e), где n(e) – число переданных электронов.

Закон эквивалентов – массы реагирующих веществ 1 и 2 пропорциональны молярным массам их эквивалентов. m 1 /m 2 = М Э1 /М Э2 , или m 1 /М Э1 = m 2 /М Э2 , или n 1 = n 2 , где m 1 и m 2 – массы двух веществ, М Э1 и М Э2 – молярные массы эквивалентов, n 1 и n 2 – количества эквивалентов этих веществ.

Для растворов закон эквивалентов может быть записан в следующем виде:

c Э1 V 1 = c Э2 V 2 , где с Э1 , с Э2 , V 1 и V 2 – молярные концентрации эквивалентов и объемы растворов этих двух веществ.

Объединенный газовый закон: pV = nRT, где p – давление (Па, кПа), V – объем (м 3 , л), n – количество вещества газа (моль), T – температура (К), T (К) = t (°C) + 273, R – константа, R = 8,314 Дж/(К? моль), при этом Дж = Па м 3 = кПа л.

2. Строение атома и Периодический закон

Корпускулярно-волновой дуализм материи – представление о том, что каждый объект может иметь и волновые, и корпускулярные свойства. Луи де Бройль предложил формулу, связывающую волновые и корпускулярные свойства объектов: ? = h/(mV), где h – постоянная Планка, ? – длина волны, которая соответствует каждому телу с массой m и скоростью V. Хотя волновые свойства существуют для всех объектов, но наблюдаться они могут лишь для микрообъектов, имеющих массы порядка массы атома и электрона.

Принцип неопределенности Гейзенберга: ?(mV x) ?х > h/2n или ?V x ?x > h/(2?m), где m – масса частицы, x – ее координата, V x – скорость в направлении x, ? – неопределенность, погрешность определения. Принцип неопределенности означает, что нельзя одновременно сколь угодно точно указать положение (координату x) и скорость (V x) частицы.

Частицы с маленькими массами (атомы, ядра, электроны, молекулы) не являются частицами в понимании этого механикой Ньютона и не могут изучаться классической физикой. Они изучаются квантовой физикой.

Главное квантовое число n принимает значения 1, 2, 3, 4, 5, 6 и 7, соответствующие электронным уровням (слоям) К, L, M, N, О, Р и Q.

Уровень – пространство, где расположены электроны с одинаковым числом n. Электроны разных уровней пространственно и энергетически отделены друг от друга, поскольку число n определяет энергию электронов Е (чем больше n, тем больше Е) и расстояние R между электронами и ядром (чем больше n, тем больше R).

Орбитальное (побочное, азимутальное) квантовое число l принимает значения в зависимости от числа n: l = 0, 1,…(n – 1). Например, если n = 2, то l = 0, 1; если n = 3, то l = 0, 1, 2. Число l характеризует подуровень (подслой).

Подуровень – пространство, где расположены электроны с определенными n и l. Подуровни данного уровня обозначаются в зависимости от числа l: s – если l = 0, p – если l = 1, d – если l = 2, f – если l = 3. Подуровни данного атома обозначаются в зависимости от чисел n и l, например: 2s (п = 2, l = 0), 3d (n = 3, l = 2) и т. д. Подуровни данного уровня имеют разную энергию (чем больше l, тем больше Е): E s < E < Е А < … и разную форму орбиталей, составляющих эти подуровни: s-орбиталь имеет форму шара, p -орбиталь имеет форму гантели и т. д.

Магнитное квантовое число m 1 характеризует ориентацию орбитального магнитного момента, равного l, в пространстве относительно внешнего магнитного поля и принимает значения: – l,…-1, 0, 1,…l, т. е. всего (2l + 1) значение. Например, если l = 2, то m 1 = -2, -1, 0, 1, 2.

Орбиталь (часть подуровня) – пространство, где расположены электроны (не более двух) с определенными n, l, m 1 . Подуровень содержит 2l+1 орбиталь. Например, d – подуровень содержит пять d-орбиталей. Орбитали одного подуровня, имеющие разные числа m 1 , имеют одинаковую энергию.

Магнитное спиновое число m s характеризует ориентацию собственного магнитного момента электрона s, равного?, относительно внешнего магнитного поля и принимает два значению: +? и _ ?.

Электроны в атоме занимают уровни, подуровни и орбитали согласно следующим правилам.

Правило Паули: в одном атоме два электрона не могут иметь четыре одинаковых квантовых числа. Они должны отличаться по меньшей мере одним квантовым числом.

Из правила Паули следует, что на орбитали могут располагаться не более двух электронов, на подуровне может содержаться не более 2(2l + 1) электронов, на уровне содержится не более 2n 2 электронов.

Правило Клечковского: заполнение электронных подуровней осуществляется в порядке возрастания суммы (n + l), а в случае одинаковой суммы (n + l) – в порядке возрастания числа n.

Графическая форма правила Клечковского.


Согласно правилу Клечковского, заполнение подуровней осуществляется в следующем порядке: 1s, 2s, 2р, 3s, Зр, 4s, 3d, 4р, 5s, 4d, 5р, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s,…

Хотя заполнение подуровней происходит по правилу Клечковского, в электронной формуле подуровни записываются последовательно по уровням: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4р, 4d, 4f и т. д. Таким образом, электронная формула атома брома записывается следующим образом: Br(35e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 .

Электронные конфигурации ряда атомов отличаются от предсказанных по правилу Клечковского. Так, для Сr и Cu:

Сr(24e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 и Cu(29e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

Правило Хунда (Гунда): заполнение ор-биталей данного подуровня осуществляется так, чтобы суммарный спин был максимален. Орбитали данного подуровня заполняются сначала по одному электрону.

Электронные конфигурации атомов можно записать по уровням, подуровням, ор-биталям. Например, электронная формула Р(15e) может быть записана:

а) по уровням)2)8)5;

б) по подуровням 1s 2 2s 2 2p 6 3s 2 3p 3 ;

в) по орбиталям


Примеры электронных формул некоторых атомов и ионов:

V(23e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 4s 2 ;

V 3+ (20e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 0 .

3. Химическая связь

3.1. Метод валентных связей

Согласно методу валентных связей, связь между атомами А и В образуется с помощью общей пары электронов.

Ковалентная связь. Донорно-ацепторная связь.

Валентность характеризует способность атомов образовывать химические связи и равна числу химических связей, образованных атомом. Согласно методу валентных связей, валентность равна числу общих пар электронов, а в случае ковалентной связи валентность равна числу неспаренных электронов на внешнем уровне атома в его основном или возбужденных состояниях.

Валентность атомов

Например, для углерода и серы:


Насыщаемость ковалентной связи: атомы образуют ограниченное число связей, равное их валентности.

Гибридизация атомных орбиталей – смешение атомных орбиталей (АО) разных подуровней атома, электроны которых участвуют в образовании эквивалентных?-связей. Эквивалентность гибридных орбиталей (ГО) объясняет эквивалентность образующихся химических связей. Например, в случае четырехвалентного атома углерода имеется один 2s– и три 2p -электрона. Чтобы объяснить эквивалентность четырех?-связей, образованных углеродом в молекулах CH 4 , CF 4 и т. д., атомные одна s- и три р- орбитали заменяют четырьмя эквивалентными гибридными sp 3 -орбиталями:

Направленность ковалентной связи состоит в том, что она образуется в направлении максимального перекрывания орбиталей, образующих общую пару электронов.

В зависимости от типа гибридизации гибридные орбитали имеют определенное расположение в пространстве:

sp – линейное, угол между осями орби-талей 180°;

sp 2 – треугольное, углы между осями орбиталей 120°;

sp 3 – тетраэдрическое, углы между осями орбиталей 109°;

sp 3 d 1 – тригонально-бипирамидальное, углы 90° и 120°;

sp 2 d 1 – квадратное, углы между осями орбиталей 90°;

sp 3 d 2 – октаэдрическое, углы между осями орбиталей 90°.

3.2. Теория молекулярных орбиталей

Согласно теории молекулярных орбита-лей, молекула состоит из ядер и электронов. В молекулах электроны находятся на молекулярных орбиталях (МО). МО внешних электронов имеют сложное строение и рассматриваются как линейная комбинация внешних орбиталей атомов, составляющих молекулу. Число образующихся МО равно числу АО, участвующих в их образовании. Энергии МО могут быть ниже (связывающие МО), равны (несвязывающие МО) или выше (разрыхляющие, антисвя-зывающие МО), чем энергии образующих их АО.

Условия взаимодействия АО

1. АО взаимодействуют, если имеют близкие энергии.

2. АО взаимодействуют, если они перекрываются.

3. АО взаимодействуют, если имеют соответствующую симметрию.

Для двухатомной молекулы АВ (или любой линейной молекулы) симметрия МО может быть:

Если данная МО имеет ось симметрии,

Если данная МО имеет плоскость симметрии,

Если МО имеет две перпендикулярные плоскости симметрии.

Присутствие электронов на связывающих МО стабилизирует систему, так как уменьшает энергию молекулы по сравнению с энергией атомов. Стабильность молекулы характеризуется порядком связи n, равным: n = (n св – n разр)/2, где n св и n разр - числа электронов на связывающих и разрыхляющих орбиталях.

Заполнение МО электронами происходит по тем же правилам, что и заполнение АО в атоме, а именно: правилу Паули (на МО не может быть более двух электронов), правилу Хунда (суммарный спин должен быть максимален) и т. д.

Взаимодействие 1s-AO атомов первого периода (Н и Не) приводит к образованию связывающей?-МО и разрыхляющей?*-МО:

Электронные формулы молекул, порядки связей n, экспериментальные энергии связей Е и межмолекулярные расстояния R для двухатомных молекул из атомов первого периода приведены в следующей таблице:


Другие атомы второго периода содержат, помимо 2s-AO, также и 2р х -, 2р y – и 2р z -АО, которые при взаимодействии могут образовывать?– и?-MO. Для атомов О, F и Ne энергии 2s– и 2р-АО существенно различаются, и можно пренебречь взаимодействием 2s-AO одного атома и 2р-АО другого атома, рассматривая взаимодействие между 2s-AO двух атомов отдельно от взаимодействия их 2р-АO. Схема МО для молекул O 2 , F 2 , Ne 2 имеет следующий вид:

Для атомов В, С, N энергии 2s– и 2р-АО близки по своим энергиям, и 2s-AO одного атома взаимодействует с 2р z -АО другого атома. Поэтому порядок МО в молекулах В 2 , С 2 и N 2 отличается от порядка МО в молекулах O 2 , F 2 и Ne 2 . Ниже приведена схема МО для молекул В 2 , С 2 и N 2:

На основании приведенных схем МО можно, например, записать электронные формулы молекул O 2 , O 2 + и O 2 ?:

O 2 + (11e)? s 2 ? s *2 ? z 2 (? x 2 ? y 2)(? x *1 ? y *0)

n = 2 R = 0,121 нм;

O 2 (12e)? s 2 ? s *2 ? z 2 (? x 2 ? y 2)(? x *1 ? y *1)

n = 2,5 R = 0,112 нм;

O 2 ?(13e)? s 2 ? s *2 ? z 2 (? x 2 ? y 2)(? x *2 ? y *1)

n = 1,5 R = 0,126 нм.

В случае молекулы O 2 теория МО позволяет предвидеть большую прочность этой молекулы, поскольку n = 2, характер изменения энергий связи и межъядерных расстояний в ряду O 2 + – O 2 – O 2 ?, а также парамагнетизм молекулы O 2 , на верхних МО которой имеются два неспаренных электрона.

3.3. Некоторые виды связей

Ионная связь – электростатическая связь между ионами противоположных зарядов. Ионная связь может рассматриваться как предельный случай ковалентной полярной связи. Ионная связь образуется, если разница электроотрицательностей атомов?Х больше чем 1,5–2,0.

Ионная связь является ненаправленной ненасыщаемой связью. В кристалле NaCl ион Na + притягивается всеми ионами Cl? и отталкивается всеми другими ионами Na + , независимо от направления взаимодействия и числа ионов. Это предопределяет большую устойчивость ионных кристаллов по сравнению с ионными молекулами.

Водородная связь – связь между атомом водорода одной молекулы и электроотрицательным атомом (F, CI, N) другой молекулы.

Существование водородной связи объясняет аномальные свойства воды: температура кипения воды гораздо выше, чем у ее химических аналогов: t кип (Н 2 O) = 100 °С, а t кип (H 2 S) = -61°C. Между молекулами H 2 S водородные связи не образуются.

4. Закономерности протекания химических процессов

4.1. Термохимия

Энергия (Е) – способность производить работу. Механическая работа (А) совершается, например, газом при его расширении: А = р ?V.

Реакции, которые идут с поглощением энергии, – эндотермические.

Реакции, которые идут с выделением энергии, – экзотермические.

Виды энергии: теплота, свет, электрическая, химическая, ядерная энергия и др.

Типы энергии: кинетическая и потенциальная.

Кинетическая энергия – энергия движущегося тела, это работа, которую может совершить тело до достижения им покоя.

Теплота (Q) – вид кинетической энергии – связана с движением атомов и молекул. При сообщении телу массой (m) и удельной теплоемкостью (с) теплоты?Q его температура повышается на величину?t: ?Q = m с ?t, откуда?t = ?Q/(c т).

Потенциальная энергия – энергия, приобретенная телом в результате изменения им или его составными частями положения в пространстве. Энергия химических связей – вид потенциальной энергии.

Первый закон термодинамики: энергия может переходить из одного вида в другой, но не может исчезать или возникать.

Внутренняя энергия (U) – сумма кинетической и потенциальной энергий частиц, составляющих тело. Поглощаемая в реакции теплота равна разности внутренней энергии продуктов реакции и реагентов (Q = ?U = U 2 – U 1), при условии, что система не совершила работы над окружающей средой. Если реакция идет при постоянном давлении, то выделяющиеся газы совершают работу против сил внешнего давления, и поглощаемая в ходе реакции теплота равна сумме изменений внутренней энергии ?U и работы А = р ?V. Эту поглощаемую при постоянном давлении теплоту называют изменением энтальпии: ?Н = ?U + р ?V, определяя энтальпию как Н = U + pV. Реакции жидких и твердых веществ протекают без существенного изменения объема (?V = 0), так что для этих реакций?Н близка к ?U (?Н = ?U ). Для реакций с изменением объема имеем ?Н > ?U , если идет расширение, и ?Н < ?U , если идет сжатие.

Изменение энтальпии обычно относят для стандартного состояния вещества: т. е. для чистого вещества в определенном (твердом, жидком или газообразном) состоянии, при давлении 1 атм = 101 325 Па, температуре 298 К и концентрации веществ 1 моль/л.

Стандартная энтальпия образования?Н обр – теплота, выделяемая или поглощаемая при образовании 1 моль вещества из простых веществ, его составляющих, при стандартных условиях. Так, например, ?Н обр (NaCl) = -411 кДж/моль. Это означает, что в реакции Na(тв) + ?Cl 2 (г) = NaCl(тв) при образовании 1 моль NaCl выделяется 411 кДж энергии.

Стандартная энтальпия реакции?Н – изменение энтальпии в ходе химической реакции, определяется по формуле: = ?Н обр (продуктов) – ?Н обр (реагентов).

Так для реакции NH 3 (г) + HCl(г) = NH 4 Cl(тв), зная?H o 6 p (NH 3)=-46 кДж/моль, ?H o 6 p (HCl) = -92 кДж/моль и?H o 6 p (NH 4 Cl) = -315 кДж/моль имеем:

H = ?H o 6 p (NH 4 Cl) – ?H o 6 p (NH 3) – ?H o 6 p (HCl) = -315 – (-46) – (-92) = -177 кДж.

Если?Н < 0, то реакция экзотермическая. Если?Н > 0, то реакция эндотермическая.

Закон Гесса: стандартная энтальпия реакции зависит от стандартных энтальпий реагентов и продуктов и не зависит от пути протекания реакции.

Самопроизвольно идущие процессы могут быть не только экзотермическими, т. е. процессами с уменьшением энергии (?Н < 0), но могут быть и эндотермическими процессами, т. е. процессами с увеличением энергии (?Н > 0). Во всех этих процессах «беспорядок» системы увеличивается.

Энтропия S – физическая величина, характеризующая степень беспорядка системы. S – стандартная энтропия, ?S – изменение стандартной энтропии. Если?S > 0, беспорядок растет, если AS < 0, то беспорядок системы уменьшается. Для процессов в которых растет число частиц, ?S > 0. Для процессов, в которых число частиц уменьшается, ?S < 0. Например, энтропия меняется в ходе реакций:

СаО(тв) + Н 2 O(ж) = Са(OH) 2 (тв), ?S < 0;

CaCO 3 (тв) = СаО(тв) + CO 2 (г), ?S > 0.

Самопроизвольно идут процессы с выделением энергии, т. е. для которых?Н < 0, и с увеличением энтропии, т. е. для которых?S > 0. Учет обоих факторов приводит к выражению для энергии Гиббса: G = Н – TS или?G = ?Н – Т ?S. Реакции, в которых энергия Гиббса уменьшается, т. е. ?G < 0, могут идти самопроизвольно. Реакции, в ходе которых энергия Гиббса увеличивается, т. е. ?G > 0, самопроизвольно не идут. Условие?G = 0 значит, что между продуктами и реагентами установилось равновесие.

При низкой температуре, когда величина Т близка к нулю, идут лишь экзотермические реакции, так как T?S – мало и?G = ?Н < 0. При высоких температурах значения T?S велико, и, пренебрегая величиной?Н, имеем?G = – T?S, т. е. самопроизвольно будут идти процессы с увеличением энтропии, для которых?S > 0, a ?G < 0. При этом чем больше по абсолютной величине значение?G, тем более полно проходит данный процесс.

Величина AG для той или иной реакции может быть определена по формуле:

G = ?С обр (продуктов) – ?G o б p (реагентов).

При этом величины?G o бр, а также?Н обр и?S o бр для большого числа веществ приведены в специальных таблицах.

4.2. Химическая кинетика

Скорость химической реакции (v ) определяется изменением молярной концентрации реагирующих веществ в единицу времени:

где v – скорость реакции, с – молярная концентрация реагента, t – время.

Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции (температуры, концентрации, присутствия катализатора и т. д.)

Влияние концентрации. В случае простых реакций скорость реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их стехиометрическим коэффициентам.

Для реакции

где 1 и 2 соответственно направление прямой и обратной реакции:

v 1 = k 1 ? [А] m ? [В] n и

v 2 = k 2 ? [C] p ? [D] q

где v – скорость реакции, k – константа скорости, [А] – молярная концентрация вещества А.

Молекулярность реакции – число молекул, участвующих в элементарном акте реакции. Для простых реакций, например: mA + nB > рС + qD, молекулярность равна сумме коэффициентов (m + n). Реакции могут быть одномолекулярными, двумолекулярными и редко трехмолекулярными. Реакции более высокой молекулярности не встречаются.

Порядок реакции равен сумме показателей степеней концентрации в экспериментальном выражении скорости химической реакции. Так, для сложной реакции

mA + nB > рС + qD экспериментальное выражение скорости реакции имеет вид

v 1 = k 1 ? [А] ? ? [В] ? и порядок реакции равен (? + ?). При этом? и? находятся экспериментально и могут не совпадать с m и n соответственно, поскольку уравнение сложной реакции представляет собой итог нескольких простых реакций.

Влияние температуры. Скорость реакции зависит от числа эффективных столкновений молекул. Увеличение температуры увеличивает число активных молекул, сообщая им необходимую для протекания реакции энергию активации Е акт и увеличивает скорость химической реакции.

Правило Вант-Гоффа. При увеличении температуры на 10° скорость реакции увеличивается в 2–4 раза. Математически это записывается в виде:

v 2 = v 1 ? ? (t 2 – t 1)/10

где v 1 и v 2 – скорости реакции при начальной (t 1) и конечной (t 2) температурах, ? – температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции при увеличении температуры на 10°.

Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса:

k = A ? e - E/(RT) ,

где k – константа скорости, А – постоянная, не зависящая от температуры, е = 2,71828, Е – энергия активации, R = 8,314 Дж/(К? моль) – газовая постоянная; Т – температура (К). Видно, что константа скорости увеличивается с увеличением температуры и уменьшением энергии активации.

4.3. Химическое равновесие

Система находится в равновесии, если ее состояние не изменяется во времени. Равенство скоростей прямой и обратной реакции – условие сохранения равновесия системы.

Примером обратимой реакции является реакция

N 2 + 3H 2 - 2NH 3 .

Закон действия масс: отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ (все концентрации указывают в степенях, равных их стехиометрическим коэффициентам) есть постоянная, называемая константой равновесия.


Константа равновесия – это мера протекания прямой реакции.

К = О – прямая реакция не идет;

К = ? – прямая реакция идет до конца;

К > 1 – равновесие сдвинуто вправо;

К < 1 – равновесие сдвинуто влево.

Константа равновесия реакции К связана с величиной изменения стандартной энергии Гиббса?G для этой же реакции:

G = – RT lnK, или?G = -2,3RT lgK, или К= 10 -0,435?G/RT

Если К > 1, то lgK > 0 и?G < 0, т. е. если равновесие сдвинуто вправо, то реакция – переход от исходного состояния к равновесному – идет самопроизвольно.

Если К < 1, то lgK < 0 и?G > 0, т. е. если равновесие сдвинуто влево, то реакция самопроизвольно вправо не идет.

Закон смещения равновесия: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, в системе возникает процесс, который противодействует внешнему воздействию.

5. Окислительно-восстановительные реакции

Окислительно-восстановите льные реакции – реакции, которые идут с изменением степеней окисления элементов.

Окисление – процесс отдачи электронов.

Восстановление – процесс присоединения электронов.

Окислитель – атом, молекула или ион, который принимает электроны.

Восстановитель – атом, молекула или ион, который отдает электроны.

Окислители, принимая электроны, переходят в восстановленную форму:

F 2 [ок. ] + 2e > 2F? [восст.].

Восстановители, отдавая электроны, переходят в окисленную форму:

Na 0 [восст. ] – 1e > Na + [ок.].

Равновесие между окисленной и восстановленной формами характеризуется с помощью уравнения Нернста для окислительно-восстановительного потенциала:

где Е 0 – стандартное значение окислительно-восстановительного потенциала; n – число переданных электронов; [восст. ] и [ок. ] – молярные концентрации соединения в восстановленной и окисленной формах соответственно.

Величины стандартных электродных потенциалов Е 0 приведены в таблицах и характеризуют окислительные и восстановительные свойства соединений: чем поло-жительнее величина Е 0 , тем сильнее окислительные свойства, и чем отрицательнее значение Е 0 , тем сильнее восстановительные свойства.

Например, для F 2 + 2e - 2F?Е 0 = 2,87 вольт, а для Na + + 1e - Na 0 Е 0 = -2,71 вольт (процесс всегда записывается для реакций восстановления).

Окислительно-восстановительная реакция представляет собой совокупность двух полуреакций, окисления и восстановления, и характеризуется электродвижущей силой (э.д.с.) ?Е 0: ?Е 0 = ?Е 0 ок – ?Е 0 восст , где Е 0 ок и?Е 0 восст – стандартные потенциалы окислителя и восстановителя для данной реакции.

Э.д.с. реакции?Е 0 связана с изменением свободной энергии Гиббса?G и константой равновесия реакции К:

?G = – nF ?Е 0 или?Е = (RT/nF) lnK.

Э.д.с. реакции при нестандартных концентрациях?Е равна: ?Е = ?Е 0 – (RT/nF) ? IgK или?Е = ?Е 0 – (0,059/n )lgK .

В случае равновесия?G = 0 и?Е = 0, откуда?Е = (0,059/n)lgK и К = 10 n?E/0,059 .

Для самопроизвольного протекания реакции должны выполняться соотношения: ?G < 0 или К >> 1, которым соответствует условие?Е 0 > 0. Поэтому для определения возможности протекания данной окислительно-восстановительной реакции необходимо вычислить значение?Е 0 . Если?Е 0 > 0, реакция идет. Если?Е 0 < 0, реакция не идет.

Химические источники тока

Гальванические элементы – устройства, преобразующие энергию химической реакции в электрическую энергию.

Гальванический элемент Даниэля состоит из цинкового и медного электродов, погруженных в растворы ZnSO 4 и CuSO 4 соответственно. Растворы электролитов сообщаются через пористую перегородку. При этом на цинковом электроде идет окисление: Zn > Zn 2+ + 2e, а на медном электроде – восстановление: Cu 2+ + 2e > Cu. В целом идет реакция: Zn + CuSO 4 = ZnSO 4 + Cu.

Анод – электрод, на котором идет окисление. Катод – электрод, на котором идет восстановление. В гальванических элементах анод заряжен отрицательно, а катод – положительно. На схемах элементов металл и раствор отделены вертикальной чертой, а два раствора – двойной вертикальной чертой.

Так, для реакции Zn + CuSO 4 = ZnSO 4 + Cu схемой гальванического элемента является запись: (-)Zn | ZnSO 4 || CuSO 4 | Cu(+).

Электродвижущая сила (э.д.с.) реакции равна?Е 0 = Е 0 ок – Е 0 восст = Е 0 (Cu 2+ /Cu) – Е 0 (Zn 2+ /Zn) = 0,34 – (-0,76) = 1,10 В. Из-за потерь напряжение, создаваемое элементом, будет несколько меньше, чем?Е 0 . Если концентрации растворов отличаются от стандартных, равных 1 моль/л, то Е 0 ок и Е 0 восст вычисляются по уравнению Нернста, а затем вычисляется э.д.с. соответствующего гальванического элемента.

Сухой элемент состоит их цинкового корпуса, пасты NH 4 Cl с крахмалом или мукой, смеси MnO 2 с графитом и графитового электрода. В ходе его работы идет реакция: Zn + 2NH 4 Cl + 2MnO 2 = Cl + 2MnOOH.

Схема элемента: (-)Zn | NH 4 Cl | MnO 2 , C(+). Э.д.с. элемента – 1,5 В.

Аккумуляторы. Свинцовый аккумулятор представляет собой две свинцовые пластины, погруженные в 30%-ный раствор серной кислоты и покрытые слоем нерастворимого PbSO 4 . При заряде аккумулятора на электродах идут процессы:

PbSO 4 (тв) + 2e > Рb(тв) + SO 4 2-

PbSO 4 (тв) + 2H 2 O > РbO 2 (тв) + 4H + + SO 4 2- + 2e

При разряде аккумулятора на электродах идут процессы:

РЬ(тв) + SO 4 2- > PbSO 4 (тв) + 2e

РbO 2 (тв) + 4H + + SO 4 2- + 2e > PbSO 4 (тв) + 2Н 2 O

Суммарную реакцию можно записать в виде:

Для работы аккумулятор нуждается в регулярной зарядке и контроле концентрации серной кислоты, которая может несколько уменьшаться при работе аккумулятора.

6. Растворы

6.1. Концентрация растворов

Массовая доля вещества в растворе w равна отношению массы растворенного вещества к массе раствора: w = m в-ва /m р-ра или w = m в-вa /(V ? ? ), так как m р-ра = V p-pa ? ? р-ра.

Молярная концентрация с равна отношению числа молей растворенного вещества к объему раствора: с = n (моль)/V (л) или с = m/(М? V(л)).

Молярная концентрация эквивалентов (нормальная или эквивалентная концентрация) с э равна отношению числа эквивалентов растворенного вещества к объему раствора: с э = n (моль экв.)/V (л) или с э = m/(М э? V(л)).

6.2. Электролитическая диссоциация

Электролитическая диссоциация – распад электролита на катионы и анионы под действием полярных молекул растворителя.

Степень диссоциации? – отношение концентрации диссоциированных молекул (с дисс) к общей концентрации растворенных молекул (с об): ? = с дисс /с об.

Электролиты можно разделить на сильные (? ~ 1) и слабые.

Сильные электролиты (для них? ~ 1) – соли и основания, растворимые в воде, а также некоторые кислоты: HNO 3 , HCl, H 2 SO 4 , HI, HBr, HClO 4 и другие.

Слабые электролиты (для них? << 1) – Н 2 O, NH 4 OH, малорастворимые основания и соли и многие кислоты: HF, H 2 SO 3 , H 2 CO 3 , H 2 S, CH 3 COOH и другие.

Ионные уравнения реакций. В ионных уравнениях реакций сильные электролиты записываются в виде ионов, а слабые электролиты, малорастворимые вещества и газы – в виде молекул. Например:

CaCO 3 v + 2HCl = CaCl 2 + Н 2 O + CO 2 ^

CaCO 3 v + 2H + + 2Cl? = Са 2+ + 2Cl? + Н 2 O + CO 2 ^

CaCO 3 v + 2Н + = Са 2+ + Н 2 O + CO 2 ^

Реакции между ионами идут в сторону образования вещества, дающего меньше ионов, т. е. в сторону более слабого электролита или менее растворимого вещества.

6.3. Диссоциация слабых электролитов

Применим закон действия масс к равновесию между ионами и молекулами в растворе слабого электролита, например уксусной кислоты:

CH 3 COOH - CH 3 COО? + Н +

Константы равновесия реакций диссоциации называются константами диссоциации. Константы диссоциации характеризуют диссоциацию слабых электролитов: чем меньше константа, тем меньше диссоциирует слабый электролит, тем он слабее.

Многоосновные кислоты диссоциируют ступенчато:

Н 3 PO 4 - Н + + Н 2 PO 4 ?

Константа равновесия суммарной реакции диссоциации равна произведению констант отдельных стадий диссоциации:

Н 3 PO 4 - ЗН + + PO 4 3-

Закон разбавления Оствальда: степень диссоциации слабого электролита (а) увеличивается при уменьшении его концентрации, т. е. при разбавлении:

Влияние общего иона на диссоциацию слабого электролита: добавление общего иона уменьшает диссоциацию слабого электролита. Так, при добавлении к раствору слабого электролита CH 3 COOH

CH 3 COOH - CH 3 COО? + Н + ? << 1

сильного электролита, содержащего общий с CH 3 COOH ион, т. е. ацетат-ион, например CH 3 COОNa

CH 3 COОNa - CH 3 COО? + Na + ? = 1

концентрация ацетат-иона увеличивается, и равновесие диссоциации CH 3 COOH сдвигается влево, т. е. диссоциация кислоты уменьшается.

6.4. Диссоциация сильных электролитов

Активность иона а – концентрация иона, проявляющаяся в его свойствах.

Коэффициент активности f – отношение активности иона а к концентрации с: f = а/с или а = fc.

Если f = 1, то ионы свободны и не взаимодействуют между собой. Это имеет место в очень разбавленных растворах, в растворах слабых электролитов и т. д.

Если f < 1, то ионы взаимодействуют между собой. Чем меньше f, тем больше взаимодействие между ионами.

Коэффициент активности зависит от ионной силы раствора I: чем больше ионная сила, тем меньше коэффициент активности.

Ионная сила раствора I зависит от зарядов z и концентраций с ионов:

I = 0,52?с z 2 .

Коэффициент активности зависит от заряда иона: чем больше заряд иона, тем меньше коэффициент активности. Математически зависимость коэффициента активности f от ионной силы I и заряда иона z записывается с помощью формулы Дебая-Хюккеля:

Коэффициенты активности ионов можно определить с помощью следующей таблицы:


6.5 Ионное произведение воды. Водородный показатель

Вода – слабый электролит – диссоциирует, образуя ионы Н + и OH?. Эти ионы гидратированы, т. е. соединены с несколькими молекулами воды, но для простоты их записывают в негидратированной форме

Н 2 O - Н + + OH?.

На основании закона действия масс, для этого равновесия:

Концентрацию молекул воды [Н 2 O], т. е. число молей в 1 л воды, можно считать постоянной и равной [Н 2 O] = 1000 г/л: 18 г/моль = 55,6 моль/л. Отсюда:

К [Н 2 O] = К (Н 2 O) = [Н + ] = 10 -14 (22°C).

Ионное произведение воды – произведение концентраций [Н + ] и – есть величина постоянная при постоянной температуре и равная 10 -14 при 22°C.

Ионное произведение воды увеличивается с увеличением температуры.

Водородный показатель рН – отрицательный логарифм концентрации ионов водорода: рН = – lg. Аналогично: pOH = – lg.

Логарифмирование ионного произведения воды дает: рН + рOH = 14.

Величина рН характеризует реакцию среды.

Если рН = 7, то [Н + ] = – нейтральная среда.

Если рН < 7, то [Н + ] > – кислотная среда.

Если рН > 7, то [Н + ] < – щелочная среда.

6.6. Буферные растворы

Буферные растворы – растворы, имеющие определенную концентрацию ионов водорода. рН этих растворов не меняется при разбавлении и мало меняется при добавлении небольших количеств кислот и щелочей.

I. Раствор слабой кислоты НА, концентрация – с кисл, и ее соли с сильным основанием ВА, концентрация – с соли. Например, ацетатный буфер – раствор уксусной кислоты и ацетата натрия: CH 3 COOH + CHgCOONa.

рН = рК кисл + lg(с соли /с кисл).

II. Раствор слабого основания ВOH, концентрация – с осн, и его соли с сильной кислотой ВА, концентрация – с соли. Например, аммиачный буфер – раствор гидроксида аммония и хлорида аммония NH 4 OH + NH 4 Cl.

рН = 14 – рК осн – lg(с соли /с осн).

6.7. Гидролиз солей

Гидролиз солей – взаимодействие ионов соли с водой с образованием слабого электролита.

Примеры уравнений реакций гидролиза.

I. Соль образована сильным основанием и слабой кислотой:

Na 2 CO 3 + H 2 O - NaHCO 3 + NaOH

2Na + + CO 3 2- + H 2 O - 2Na + + HCO 3 ? + OH?

CO 3 2- + H 2 O - HCO 3 ? + OH?, pH > 7, щелочная среда.

По второй ступени гидролиз практически не идет.

II. Соль образована слабым основанием и сильной кислотой:

AlCl 3 + H 2 O - (AlOH)Cl 2 + HCl

Al 3+ + ЗCl? + H 2 O - AlOH 2+ + 2Cl? + Н + + Cl?

Al 3+ + H 2 O - AlOH 2+ + Н + , рН < 7.

По второй ступени гидролиз идет меньше, а по третьей ступени практически не идет.

III. Соль образована сильным основанием и сильной кислотой:

К + + NO 3 ? + Н 2 O ? нет гидролиза, рН? 7.

IV. Соль образована слабым основанием и слабой кислотой:

CH 3 COONH 4 + H 2 O - CH 3 COOH + NH 4 OH

CH 3 COO? + NH 4 + + H 2 O - CH 3 COOH + NH 4 OH, рН = 7.

В ряде случаев, когда соль образована очень слабыми основаниями и кислотами, идет полный гидролиз. В таблице растворимости у таких солей символ – «разлагаются водой»:

Al 2 S 3 + 6Н 2 O = 2Al(OH) 3 v + 3H 2 S^

Возможность полного гидролиза следует учитывать в обменных реакциях:

Al 2 (SO 4) 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 v + 3Na 2 SO 4 + 3CO 2 ^

Степень гидролиза h – отношение концентрации гидролизованных молекул к общей концентрации растворенных молекул.

Для солей, образованных сильным основанием и слабой кислотой:

= ch, рOH = – lg, рН = 14 – рOH.

Из выражения следует, что степень гидролиза h (т. е. гидролиз) увеличивается:

а) с увеличением температуры, так как увеличивается K(H 2 O);

б) с уменьшением диссоциации кислоты, образующей соль: чем слабее кислота, тем больше гидролиз;

в) с разбавлением: чем меньше с, тем больше гидролиз.

Для солей, образованных слабым основанием и сильной кислотой

[Н + ] = ch, рН = – lg.

Для солей, образованных слабым основанием и слабой кислотой

6.8. Протолитическая теория кислот и оснований

Протолиз – процесс передачи протона.

Протолиты – кислоты и основания, отдающие и принимающие протоны.

Кислота – молекула или ион, способные отдавать протон. Каждой кислоте соответствует сопряженное с нею основание. Сила кислот характеризуется константой кислоты К к.

Н 2 CO 3 + Н 2 O - Н 3 O + + HCO 3 ?

К к = 4 ? 10 -7

3+ + Н 2 O - 2+ + Н 3 O +

К к = 9 ? 10 -6

Основание – молекула или ион, способные принимать протон. Каждому основанию соответствует сопряженная с ним кислота. Сила оснований характеризуется константой основания К 0 .

NH 3 ? Н 2 O (Н 2 O) - NH 4 + + OH?

К 0 = 1,8 ?10 -5

Амфолиты – протолиты, способные к отдаче и к присоединению протона.

HCO 3 ? + H 2 O - Н 3 O + + CO 3 2-

HCO 3 ? – кислота.

HCO 3 ? + H 2 O - Н 2 CO 3 + OH?

HCO 3 ? – основание.

Для воды: Н 2 O+ Н 2 O - Н 3 O + + OH?

K(H 2 O) = [Н 3 O + ] = 10 -14 и рН = – lg.

Константы К к и К 0 для сопряженных кислот и оснований связаны между собой.

НА + Н 2 O - Н 3 O + + А?,

А? + Н 2 O - НА + OH?,

7. Константа растворимости. Растворимость

В системе, состоящей из раствора и осадка, идут два процесса – растворение осадка и осаждение. Равенство скоростей этих двух процессов является условием равновесия.

Насыщенный раствор – раствор, который находится в равновесии с осадком.

Закон действия масс в применении к равновесию между осадком и раствором дает:

Поскольку = const,

К = K s (AgCl) = .

В общем виде имеем:

А m B n (тв.) - m A +n + n B -m

K s (A m B n) = [А +n ] m -m ] n .

Константа растворимости K s (или произведение растворимости ПР) – произведение концентраций ионов в насыщенном растворе малорастворимого электролита – есть величина постоянная и зависит лишь от температуры.

Растворимость малорастворимого вещества s может быть выражена в молях на литр. В зависимости от величины s вещества могут быть разделены на малорастворимые – s < 10 -4 моль/л, среднерастворимые – 10 -4 моль/л? s ? 10 -2 моль/л и хорошо растворимые s >10 -2 моль/л.

Растворимость соединений связана с их произведением растворимости.


Условие осаждения и растворения осадка

В случае AgCl: AgCl - Ag + + Cl?

K s = :

а) условие равновесия между осадком и раствором: = K s .

б) условие осаждения: > K s ; в ходе осаждения концентрации ионов уменьшаются до установления равновесия;

в) условие растворения осадка или существования насыщенного раствора: < K s ; в ходе растворения осадка концентрация ионов увеличивается до установления равновесия.

8. Координационные соединения

Координационные (комплексные) соединения – соединения с донорно-акцеп-торной связью.

Для K 3 :

ионы внешней сферы – 3К + ,

ион внутренней сферы – 3- ,

комплексообразователь – Fe 3+ ,

лиганды – 6CN?, их дентатность – 1,

координационное число – 6.

Примеры комплексообразователей: Ag + , Cu 2+ , Hg 2+ , Zn 2+ , Ni 2+ , Fe 3+ , Pt 4+ и др.

Примеры лигандов: полярные молекулы Н 2 O, NH 3 , CO и анионы CN?, Cl?, OH? и др.

Координационные числа: обычно 4 или 6, реже 2, 3 и др.

Номенклатура. Называют сначала анион (в именительном падеже), затем катион (в родительном падеже). Названия некоторых лигандов: NH 3 – аммин, Н 2 O – акво, CN? – циано, Cl? – хлоро, OH? – гидроксо. Названия координационных чисел: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Указывают степень окисления комплек-сообразователя:

Cl – хлорид диамминсеребра(I);

SO 4 – сульфат тетрамминмеди(II);

K 3 – гексацианоферрат(III) калия.

Химическая связь.

Теория валентных связей предполагает гибридизацию орбиталей центрального атома. Расположение образующихся при этом гибридных орбиталей определяет геометрию комплексов.

Диамагнитный комплексный ион Fe(CN) 6 4- .

Цианид-ион – донор

Ион железа Fe 2+ – акцептор – имеет формулу 3d 6 4s 0 4p 0 . С учетом диамагнитности комплекса (все электроны спарены) и координационного числа (нужны 6 свободных орбиталей) имеем d 2 sp 3 -гибридизацию:

Комплекс диамагнитный, низкоспиновый, внутриорбитальный, стабильный (не используются внешние электроны), октаэд-рический (d 2 sp 3 -гибридизация).

Парамагнитный комплексный ион FeF 6 3- .

Фторид-ион – донор.

Ион железа Fe 3+ – акцептор – имеет формулу 3d 5 4s 0 4p 0 . С учетом парамагнитности комплекса (электроны распарены) и координационного числа (нужны 6 свободных орбиталей) имеем sp 3 d 2 -гибридизацию:

Комплекс парамагнитный, высокоспиновый, внешнеорбитальный, нестабильный (использованы внешние 4d-орбитали), октаэдрический (sp 3 d 2 -гибридизация).

Диссоциация координационных соединений.

Координационные соединения в растворе полностью диссоциируют на ионы внутренней и внешней сфер.

NO 3 > Ag(NH 3) 2 + + NO 3 ?, ? = 1.

Ионы внутренней сферы, т. е. комплексные ионы, диссоциируют на ионы металла и лиганды, как слабые электролиты, по ступеням.


где K 1 , К 2 , К 1 _ 2 называются константами нестойкости и характеризуют диссоциацию комплексов: чем меньше константа нестойкости, тем меньше диссоциирует комплекс, тем он устойчивее.

Радикалы в химии - это атомарные частички, обладающие некими особенностями, связанными с переходом между соединениями. В данной статье мы ознакомимся с представителями радикалов, их определением и особенностями, а также уделим внимание их видовому разнообразию.

Введение

Радикал в химии - это атом или его группа, что способна переходить, не претерпевая изменений, от одной комбинации соединения в другое. Подобным определением пользовался А. Л. Лавуазье, который его же и создал.

По мнению Лавуазье предполагалось, что каждая кислота образована двумя простыми и неразложимыми веществами - кислородом и кислотным радикалом. Согласно такому взгляду, предполагалось, что серные кислоты создаются кислородом и серой. Однако в те времена еще не было известно о различии между кислотным ангидридом и собственно кислотой.

Создание теории

Теория радикалов в химии являлась одной из ведущих в химии первой половины XIX века. В ее основу вложено представление А. Л. Лавуазье о важности атомов кислорода в химическом учении и дуалистической форме состава хим. соединений. Он, пользуясь «радикалом» как терминологической единицей, высказывал свои мысли. Они затрагивали особенности строения органических и неорганических кислот. Последние, по его мнению, образовались из кислорода и простых радикалов (из 1-го элемента). Органические кислоты - это вещества, объединенные взаимодействием O 2 и сложных радикалов (соединение C и H).

После того как был открыт циан и проведена аналогия между некоторыми цианидами и хлоридами, понимание сложных радикалов улучшилось и укрепилось. Их стали определять как атомы, не изменяющихся в ходе процесса перехода из 1-го соединения в 2-е. И. Барцелицус поддержал подобный взгляд своим авторитетным мнением. Еще одним важным шагом на пути к пониманию данных веществ стало предложение о рассмотрении винного спирта и эфира как гидрата «этерина». Допустили подобную точку зрения Ж. Дюма и П. Булле.

Радикалы в химии - это вещества, что не претерпевают изменений при переходах. Теория, что была создана для их описания, в 1840-50 годах стала постепенно заменяться на теорию типов. Смена была связанна с наличием немалого количества факторов, которые противоречиво описывались ТР.

Организм и радикалы

Свободные радикалы в организме - это частички, обладающие одним или несколькими неспаренными электронами, расположенными на внешней оболочке электронов. В другом определении свободный радикал описывают как молекулу или атом, способный поддерживать независимое существование. Он обладает некоторой стабильностью и 1 - 2 электрона (e -) в неспаренном состоянии. Частички e - занимают орбиталь молекулы или атома в единственном виде. Радикалам свойственно наличие парамагнитных свойств, что объясняется взаимодействием электрона с магнитными полями. Существуют случаи, в которых наличие e - в неспаренном виде влечет за собой значительное усиление реакционной способности.

Примерами свободных радикалов являются молекулы кислорода (O 2), оксид азота с разными валентностями (NO и NO 2) и диоксид хлора (ClO 2).

Органика

Органические радикалы - это ионные частицы, которым свойственно одновременно наличие неспаренного электрона и заряда. Чаще всего, в реакциях органической химии, ион-радикалы создаются вследствие протеканий одноэлектронных переносов.

Если окисление протекает в одноэлектронной форме и применимо к нейтральной молекуле с избытком электронной плотности, то оно приведет к созданию катион-радикала. Противоположное протекание процесса, в ходе которого нейтральная молекула восстанавливается, приводит к образованию анион-радикала.

Ряд ароматических углеводородов из многоядерной группы может самостоятельно образовать оба вида ион-радикалов (органических) без особых усилий.

Свободные радикалы в химии - это крайне разнообразные вещества, как по своему строению, так и свойствам. Они могут пребывать в разных агрегатных состояниях, например, жидком или газовом. Также может различаться их длительность жизни или количество электронов, что остались неспаренными. Условно каждый радикал можно отнести к одной из двух групп: -p- или s-электронные. Они отличаются местом локализации неспаренного е - . В первом случае отрицательная частица занимает положение на 2р- орбитали в преобладающем количестве случаев. Соответствующий ряд атомных ядер при этом находится в узловой орбитальной плоскости. В варианте с s-группой, локализация электрона происходит таким образом, что нарушение электронной конфигурации практически не происходит.

Понятие углеводородного радикала

Углеводородный радикал - это атомная группа, образовавшая связь с молекулярной функциональной группой. Также их называют углеводородными остатками. Чаще всего, в ходе хим. реакции радикалы претерпевают переходы из одних соединений в другие и не изменяются. Однако такие объекты химического изучения могут нести в себе ряд функциональных групп. Понимание этого заставляет человека вести себя с радикалами крайне осторожно. К таким соединениям чаще относятся вещества, в состав которых входят углеводородные остатки. Сам радикал может быть функциональной группой.

Явление в алкилах

Алкильные радикалы - это соединения из ряда интермедиатов, что являются частичками алканов. Они обладают свободным e - в единственном числе. Примером может служить метил (CH 3) и этил (C 2 H 5). Среди них выделяют несколько типов: первичную (например, метил - ▪CH 3), вторичную (изопропил - ▪CH(CH 3) 2), третичную (трет-бутил ▪C(CH 3) 3) и четвертичную (неопентил - ▪CH 2 C(CH 3) 3) группу алкильных радикалов.

Явление в метилене

Метиленовый радикал - это простейшая форма карбена. Представлен в виде бесцветного газа, а формулой схож с углеводородами из ряда алкенов - CH 2 . Предположение о существовании метилена было выдвинуто в тридцатых годах ХХ века, однако найти неопровержимые доказательства удалось только в 1959. Это было осуществлено благодаря спектральному исследовательскому методу.

Получение метилена стало возможным благодаря использованию диазометановых или кетановых веществ. Их подвергают разложению под воздействием УФ-излучения. В ходе подобного процесса образуется метилен, а также молекулы азота и углеродный монооксид.

Радикал в химии - это также и молекула метилена, обладающая одним углеродным атомом, в котором отсутствует двойная связь. Это отличает метилен от алкенов, и потому его относят к карбенам. Ему свойственна чрезвычайная химическая активность. Положение электронов может обуславливать различные свойства химической природы и геометрию. Существует синглетная (e - - спаренный) и триплетная (электрон, пребывающий в свободном состоянии - неспаренный) формы. Триплетная форма позволяет описывать метилен как бирадикал.

Гидрофобность

Гидрофобный радикал - это соединение, обладающее другой полярной группой. Такие молекулы и атомы могут вступать в связь с аминоалкилсульфо-группами при помощи различных промежуточных связей.

В соответствие со строением выделяют прямоцепочечные и разветвленные, парафиновые (олефиновые) и перфторированные радикалы. Наличие гидрофобного радикала позволяет некоторым веществам легко проникать сквозь бислойные липидные мембраны, а также встраиваться в их структуры. Подобные вещества входят в состав неполярных аминокислот, которые выделяются благодаря определенному показателю полярности боковой цепи.

В современном способе рациональной классификации аминокислот выделяют радикалы в соответствие с их полярностью, т. е. способностью взаимодействовать с водой при наличии физиологического значения pH (около 7.0 pH). В соответствии с типом содержащегося радикала выделяют несколько классов аминокислот: неполярную, полярную, ароматическую, отрицательно и положительно заряженную группу.

Радикалы с гидрофобными свойствами вызывают общее снижение растворимости пептидов. Аналоги с гидрофильными качественными характеристиками обуславливают формирование гидратной оболочки вокруг самой аминокислоты, а пептиды при взаимодействии с ними лучше растворяются.

Химия- наука о веществах и их превращениях друг в друга.

Вещества- это химически чистые вещества

Химически чистое вещество- это совокупность молекул, имеющих одинаковый качественный и количественный состав и одинаковое строение.

СН 3 -О-СН 3 -

СН 3 -СН 2 -ОН

Молекула - мельчайшие частицы вещества, обладающие всеми его химическими свойствами; молекула состоит из атомов.

Атом- это химически неделимые частицы, из-за которых образованы молекулы. (для благородных газов молекула и атом одно и тоже, Не, Ar)

Атом- электронейтральная частица, состоящая из положительно заряженного ядра, вокруг которого по своим строго определенным законам распределены отрицательно заряженные электроны. Причём суммарный заряд электронов равен заряду ядра.

Ядро атомов состоит из положительно заряженных протонов (р) и нейтронов (n) не несущих никакого заряда. Общее название нейтронов и протонов – нуклоны. Масса протонов и нейтронов практически одинакова.

Электроны (е -) несут отрицательный, заряд равный заряду протона. Масса е - составляет приблизительно 0,05% от массы протона и нейтрона. Таким образом, вся масса атома сосредоточена в его ядре.

Число р в атоме, равные заряду ядра, называется порядковым номером (Z), так как атом электронейтрален число е - равно числу р.

Массовым числом (А) атома называется сумма протонов и нейтронов в ядре. Соответственно число нейтронов в атоме равно разности между А и Z. (массовым числом атома и порядковым номером).(N=А-Z).

17 35 Cl р=17, N=18, Z=17. 17р + , 18n 0 , 17е - .

Нуклоны

Химические свойства атомов определяется их электронным строением (число электронов), которое равно порядковому номеру атомов (заряду ядра). Следовательно, все атомы с одинаковым зарядом ядра в химическом отношении ведут себя одинаково и рассчитываются как атомы одного и того же химического элемента.

Химический элемент – это совокупность атомов с одинаковым зарядом ядра. (110 химических элементов).

Атомы, имея одинаковый заряд ядра, могут различаться массовым числом, что связанно с различным числом нейтронов в их ядрах.

Атомы, имеющие одинаковый Z, но различное массовое число называются изотопы.

17 35 Cl 17 37 Cl

Изотопы водорода Н:

Обозначение: 1 1 Н 1 2 Д 1 3 Т

Название: протий дейтерий тритий

Состав ядра: 1р 1р+1n 1р+2n

Протий и дейтерий-стабильны

Тритий-распадается(радиоактивный) Используется в водородных бомбах.

Атомная единица массы. Число Авогадро. Моль.

Массы атомов и молекул очень малы (приблизительно 10 -28 до 10 -24 г.), для практического отображения этих масс целесообразно ввести свою единицу измерения, которая бы приводила к удобной и привычной шкале.

Т.к масса атома сосредоточена в его ядре, состоящих из практически одинаковых по массе протонов и нейтронов, то логично за единицу массы атомов принять массу одного нуклона.

Условились за единицу массы атомов и молекул принять одну двенадцатую изотопа углерода, имеющее симметричное строение ядра (6р+6n). Эту единицу называют атомной единицей массы (а.е.м.), она численно равна массе одного нуклона. В этой шкале массы атомов близки к целочисленным значениям: Не-4; Al-27; Ra-226 а.е.м……

Рассчитаем массу 1 а.е.м в граммах.

1/12 (12 С)= =1,66*10 -24 г/а.е.м

Рассчитаем, какое количество а.е.м содержится в 1г.

N A = 6,02 *-число Авогадро

Полученное соотношение называется числом Авогадро, показывает сколько а.е.м содержится в 1г.

Массы атомов, приведенные в Периодической таблице выражены в а.е.м

Молекулярная масса- это масса молекулы, выраженная в а.е.м, находится как сумма масс всех атомов, образующих данную молекулу.

м(1 молекулы Н 2 SO 4)= 1*2+32*1+16*4= 98 а.е.м

Для перехода от а.е.м к практически используемой в химии 1 г ввели порционный подсчёт количества вещества причём в каждой порции содержится число N A структурных единиц (атомов, молекул, ионов, электронов). В этом случае масса такой порции, называемой 1 моль, выраженной в граммах, численно равна атомной или молекулярной массе, выраженных в а.е.м.

Найдём массу 1 моль Н 2 SO 4:

М(1 моль Н 2 SO 4)=

98а.е.м*1,66**6,02*=

Как видно молекулярная и молярная массы численно равны.

1 моль – количество вещества, содержащее число Авогадро структурных единиц (атомов, молекул, ионов).

Молекулярная масса(М) - масса 1 моль вещества, выраженная в граммах.

Количество вещества-V(моль); масса вещества м(г); молярная масса М(г/моль)-связаны соотношением: V=;

2Н 2 О+ О 2 2Н 2 О

2 моль 1 моль

2.Основные законы химии

Закон постоянства состава вещества- химически чистое вещество независимо от способа получения всегда имеет постоянный качественный и количественный составы.

CH3+2O2=CO2+2H2O

NaOH+HCl=NaCl+H2O

Вещества с постоянным составом называются- дальтониты. В качестве исключения известны вещества неизменного состава- бертолиты (оксиды, карбиды, нитриды)

Закон сохранения массы (Ломоносов)- масса веществ вступивших в реакцию всегда равна массе продуктов реакции. Из этого следует что атомы в ходе реакции не исчезают и не образуются они переходят из одних веществ в другие. На этом основан подбор коэффициентов в уравнении химической реакции, число атомов каждого элемента в левой и правой частях уравнения должно быть равно.

Закон эквивалента- в химических реакциях вещества реагируют и образуются в количествах равных эквиваленту (Сколько эквивалента одного вещества израсходовано, ровно столько же эквивалентов израсходовано или образовалось другого вещества).

Эквивалент- количество вещества, которое в ходе реакции присоединяет, замещает, высвобождает один моль атомов (ионов) H. Масса эквивалента выраженная в граммах называется эквивалентной массой (Э).

Газовые законы

Закон Дальтона- общее давление смеси газов равно сумме парциальных давлений всех компонентов газовой смеси.

Закон Авогадро- равные объёмы различных газов при одинаковых условиях содержат равное число молекул.

Следствие: один моль любого газа при нормальных условиях (t=0 градусов или 273K и P=1 атмосфера или 101255 Паскаль или 760 мм. Рт. Столба.) занимает V=22,4 л.

V который занимает один моль газа называется молярным объёмом Vm.

Зная объём газа (смеси газа) и Vm при данных условиях, легко рассчитать количество газа (газовой смеси) =V/Vm.

Уравнение Менделеева- Клапейрона.- связывает количество газа с условиями, при которых он находится. pV=(m/M)*RT= *RT

При использовании данного уравнения все физические величины должны быть выражены в СИ: p-давление газа (паскаль), V-объём газа (литры), m- масса газа (кг.) , М -молярная масса (кг/моль), Т-температура по абсолютной шкале (К), Ню-количество газа (моль), R- газовая постоянная = 8,31 Дж/(моль*К).

Д- относительная плотность одного газа по другому- отношение М газа к М газа, выбранного в качестве стандарта, показывает во сколько раз один газ тяжелее другого Д=М1/М2.

Способы выражения состава смеси веществ.

Массовая доля W- отношение массы вещества к массы всей смеси W=((m в-ва)/(m р-ра))*100%

Мольная доля æ -отношение кол-ва в-ва, к общему кол-ву всех вв. в смеси.

Большинство химических элементов в природе представлены в виде смеси различных изотопов; зная изотопный состав химического элемента, выраженный в мольных долях, рассчитывают средневзвешенное значение атомной массы этого элемента, которая и переводится в ИСХЭ. А= Σ (æi*Аi)= æ1*А1+ æ2*А2+…+ æn*Аn , где æi- мольная доля i-ого изотопа, Аi- атомная масса i-ого изотопа.

Объёмная доля (φ)- отношение Vi к объёму всей смеси. φi=Vi/VΣ

Зная объёмны состав газовой смеси, рассчитывают Мср смеси газов. Мср= Σ (φi*Mi)= φ1*М1+ φ2*М2+…+ φn*Мn

Вверх