График функции y 2 1. Как построить график функции

Данный методический материал носит справочный характер и относится к широкому кругу тем. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график . В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций .

Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики . Графики для чайников? Можно сказать и так.

По многочисленным просьбам читателей кликабельное оглавление :

Кроме того, есть сверхкраткий конспект по теме
– освойте 16 видов графиков, изучив ШЕСТЬ страниц!

Серьёзно, шесть, удивился даже я сам. Данный конспект содержит улучшенную графику и доступен за символическую плaту , демо-версию можно посмотреть . Файл удобно распечатать, чтобы графики всегда были под рукой. Спасибо за поддержку проекта!

И сразу начинаем:

Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей .

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат :

1) Чертим координатные оси. Ось называется осью абсцисс , а ось – осью ординат . Чертить их всегда стараемся аккуратно и не криво . Стрелочки тоже не должны напоминать бороду Папы Карло.

2) Подписываем оси большими буквами «икс» и «игрек». Не забываем подписывать оси .

3) Задаем масштаб по осям: рисуем ноль и две единички . При выполнении чертежа самый удобный и часто встречающийся масштаб: 1 единица = 2 клеточки (чертеж слева) – по возможности придерживайтесь именно его. Однако время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда масштаб уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко, но бывает, что масштаб чертежа приходится уменьшать (или увеличивать) еще больше

НЕ НУЖНО «строчить из пулемёта» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Декарту, а студент – не голубь. Ставим ноль и две единицы по осям . Иногда вместо единиц удобно «засечь» другие значения, например, «двойку» на оси абсцисс и «тройку» на оси ординат – и эта система (0, 2 и 3) тоже однозначно задаст координатную сетку.

Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа . Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярный масштаб 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем более мелкий масштаб 1 единица = 1 клеточка.

Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.

К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая то мажет, то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым.

Дополнительно : вИдение прямоугольной системы координат глазами аналитической геометрии освещается в статье Линейная (не) зависимость векторов. Базис векторов , подробную информацию о координатных четвертях можно найти во втором параграфе урока Линейные неравенства .

Трехмерный случай

Здесь почти всё так же.

1) Чертим координатные оси. Стандарт: ось аппликат – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.

2) Подписываем оси.

3) Задаем масштаб по осям. Масштаб по оси – в два раза меньше, чем масштаб по другим осям . Также обратите внимание, что на правом чертеже я использовал нестандартную «засечку» по оси (о такой возможности уже упомянуто выше) . С моей точки зрения, так точнее, быстрее и эстетичнее – не нужно под микроскопом выискивать середину клетки и «лепить» единицу впритык к началу координат.

При выполнении трехмерного чертежа опять же – отдавайте приоритет масштабу
1 единица = 2 клетки (чертеж слева).

Для чего нужны все эти правила? Правила существуют для того, чтобы их нарушать. Чем я сейчас и займусь. Дело в том, что последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но чертить их на самом деле жуть как неохота Эксель их начертит гораздо точнее.

Графики и основные свойства элементарных функций

Линейная функция задается уравнением . График линейной функций представляет собой прямую . Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:


А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:


При оформлении чертежа всегда подписываем графики .

Не лишним будет вспомнить частные случаи линейной функции:


Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа . В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками.

1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .

Построение прямой – самое распространенное действие при выполнении чертежей.

Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости .

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай:

Вспоминаем некоторые свойства функции .

Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы. Почему это так, можно узнать из теоретической статьи о производной и урока об экстремумах функции . А пока рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция не является чётной , но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Данный алгоритм построения образно можно назвать «челноком» или принципом «туда-сюда» с Анфисой Чеховой.

Выполним чертеж:


Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции () справедливо следующее:

Если , то ветви параболы направлены вверх .

Если , то ветви параболы направлены вниз .

Углублённые знания о кривой можно получить на уроке Гипербола и парабола .

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

График функции

Он представляет собой одну из ветвей параболы . Выполним чертеж:


Основные свойства функции :

В данном случае ось является вертикальной асимптотой для графика гиперболы при .

Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой .

Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу .

Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси .

Таким образом, ось является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

Функция является нечётной , а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

График функции вида () представляет собой две ветви гиперболы .

Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

Если , то гипербола расположена во второй и четвертой координатных четвертях .

Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков .

Пример 3

Построить правую ветвь гиперболы

Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

Детальную геометрическую информацию о рассмотренной линии можно найти в статье Гипербола и парабола .

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит:

График функции пока оставим в покое, о нём позже.

Основные свойства функции :

Принципиально так же выглядят графики функций , и т. д.

Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .
Выполним поточечный чертеж:

Если позабылось, что такое логарифм, пожалуйста, обратитесь к школьным учебникам.

Основные свойства функции :

Область определения :

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

Обязательно нужно знать и помнить типовое значение логарифма : .

Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость.

В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции . Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой .

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения : , то есть для любого значения «икс» существует значение синуса.

Область значений: . Функция является ограниченной : , то есть, все «игреки» сидят строго в отрезке .
Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения.

Для начала попробуй найти область определения функции:

Справился? Сравним​ ответы:

Все верно? Молодец!

Теперь попробуем найти область значений функции:

Нашел? Сравниваем:

Сошлось? Молодец!

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее - найти и область определения функции, и область значений функции.

Как найти и область определения и область значений функции (продвинутый вариант)

Вот что получилось:

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь как это сделать, прочитай раздел про ):

Справился? Сверим ответы :

  1. , так как подкоренное выражение должно быть больше или равно нулю.
  2. , так как на ноль делить нельзя и подкоренное выражение не может быть отрицательным.
  3. , так как, соответственно при всех.
  4. , так как на ноль делить нельзя.

Однако, у нас остался еще один не разобранный момент…

Еще раз повторю определение и сделаю на нем акцент:

Заметил? Слово «единственный» - это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. . При, мы подставляем данное значение в наше «правило» и получаем, что. Одному значению соответствует одно значение. Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

«Смотри! - скажешь ты, -« » встречается два раза!» Так быть может парабола не является функцией? Нет, является!

То, что « » встречается два раза далеко не повод обвинять параболу в неоднозначности!

Дело в том, что, при расчёте для, мы получили один игрек. И при расчёте с мы получили один игрек. Так что все верно, парабола является функцией. Посмотри на график:

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» - нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу множества ставится в соответствие несколько элементов множества. Соответственно, это не функция.

Проверим твои знания на практике.

Определи по рисункам, что является функцией, а что нет:

Разобрался? А вот и ответы :

  • Функцией является - В,Е.
  • Функцией не является - А, Б, Г, Д.

Ты спросишь почему? Да вот почему:

На всех рисунках кроме В) и Е) на один приходится несколько!

Уверена, теперь, ты с легкостью отличишь функцию от не функции, скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции. Приступаем к следующему разделу - как задать функцию?

Способы задания функции

Как ты думаешь, что означают слова «задать функцию» ? Правильно, это значит объяснить всем желающим, о какой функции в данном случае идет речь. Причем объяснить так, чтобы каждый понял тебя правильно и нарисованные людьми по твоему объяснению графики функций были одинаковы.

Как это можно сделать? Как задать функцию? Самый простой способ, который уже не раз применялся в этой статье - с помощью формулы. Мы пишем формулу, и, подставляя в нее значение, высчитываем значение. А как ты помнишь, формула - это закон, правило, по которому нам и другому человеку становится ясно, как икс превращается в игрек.

Обычно, именно так и делают - в заданиях мы видим уже готовые функции, заданные формулами, однако, существуют и другие способы задать функцию, про которые все забывают, в связи с чем вопрос «как еще можно задать функцию?» ставит в тупик. Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ задания функции

Аналитический способ это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ. Если у тебя есть формула, то ты знаешь о функции абсолютно все - ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию. Чему равно?

«Что это значит?» - спросишь ты. Сейчас объясню.

Напомню, что в записи выражение в скобках называется аргументом. И этот аргумент может быть любым выражением, не обязательно просто. Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении.

В нашем примере получится так:

Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене.

Найдите значение выражения, при.

Уверена, что сначала, ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Все как и в прошлом примере: каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении. Например, для функции.

Что же нужно сделать в нашем примере? Вместо надо написать, а вместо - :

сократить получившееся выражение:

Вот и все!

Самостоятельная работа

Теперь попробуй самостоятельно найти значение следующих выражений:

  1. , если
  2. , если

Справился? Сравним наши ответы: Мы привыкли, что функция имеет вид

Даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например.

Попробуй построить эту функцию самостоятельно.

Справился?

Вот как строила ее я.

Какое уравнение мы в итоге вывели?

Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

Вот как раз то, о чем мы говорили… Одному соответствует несколько.

Попробуем нарисовать то, что получилось:

Является ли то, что у нас получилось функцией?

Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

«Потому что одному значению соответствует несколько значений!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Здесь ты сразу подметил закономерность - игрек в три раза больше чем икс. А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоями способами:

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них. Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее. Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале - не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали - аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать. Как это? Да очень просто!

Словесное описание функции

Как же описать функцию словесно? Возьмем наш недавний пример - . Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного. Ты, конечно, возразишь - «есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой. Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа». Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Наибольшая цифра в данном числе - , соответственно, - уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному - рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику. Более подробно про каждую функцию читай в соответствующем разделе.

Линейная функция

Функция вида, где, - действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента.

Область определения функции (aka область допустимых значений аргумента) - .

Область значений - .

Квадратичная функция

Функция вида, где

Графиком функции является парабола, при ветви параболы направлены вниз, при — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле

Положение параболы на координатной плоскости относительно значения и коэффициента показаны на рисунке:

Область определения

Область значений зависит от экстремума данной функции (точки вершины параболы) и коэффициента (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой, где

Число называется коэффициентом обратной пропорциональности. В зависимости от того, какое значение, ветви гиперболы находятся в разных квадратах:

Область определения - .

Область значений - .

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Функцией называется правило, по которому каждому элементу множества ставится в соответствие единственный элемент множества.

  • - это формула, обозначающая функцию, то есть зависимость одной переменной от другой;
  • - переменная величина, или, аргумент;
  • - зависимая величина - изменяется при изменении аргумента, то есть согласно какой-либо определенной формуле, отражающей зависимость одной величины от другой.

2. Допустимые значения аргумента , или область определения функции - это то, что связано с возможными, при которых функция имеет смысл.

3. Область значений функции - это то, какие значения принимает, при допустимых значениях.

4. Существует 4 способа задания функции:

  • аналитический (с помощью формул);
  • табличный;
  • графический
  • словесное описание.

5. Основные виды функций:

  • : , где, - действительные числа;
  • : , где;
  • : , где.

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f (x ) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у . При этом одно и то же значение у может быть получено при различных х .

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х ), при которых функция определена, т.е. ее значение существует. Обозначается область определения D (y ). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е (у ).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f (x ) называют четной х

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f (x ) называют нечетной , если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х .

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида , и для них не выполняется ни одно из равенств или свойств приведенных выше.

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x 1 ; 0) и (x 2 ; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x 0 ; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c ). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax 2 + bx + c , то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x | выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f (x ) называется периодической , если существует такое, неравное нулю, число Т , что f (x + Т ) = f (x ), для любого х из области определения функции f (x ). Если функция f (x ) является периодической с периодом T , то функция:

где: A , k , b – постоянные числа, причем k не равно нулю, также периодическая с периодом T 1 , который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой :

График функции y = cosx называется косинусоидой . Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

На области определения степенной функции y = x p имеют место следующие формулы:
; ;
;
; ;
; ;
; .

Свойства степенных функций и их графики

Степенная функция с показателем равным нулю, p = 0

Если показатель степенной функции y = x p равен нулю, p = 0 , то степенная функция определена для всех x ≠ 0 и является постоянной, равной единице:
y = x p = x 0 = 1, x ≠ 0 .

Степенная функция с натуральным нечетным показателем, p = n = 1, 3, 5, ...

Рассмотрим степенную функцию y = x p = x n с натуральным нечетным показателем степени n = 1, 3, 5, ... . Такой показатель также можно записать в виде: n = 2k + 1 , где k = 0, 1, 2, 3, ... - целое не отрицательное. Ниже представлены свойства и графики таких функций.

График степенной функции y = x n с натуральным нечетным показателем при различных значениях показателя степени n = 1, 3, 5, ... .

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 1 , функция является обратной к самой себе: x = y
при n ≠ 1 , обратной функцией является корень степени n :

Степенная функция с натуральным четным показателем, p = n = 2, 4, 6, ...

Рассмотрим степенную функцию y = x p = x n с натуральным четным показателем степени n = 2, 4, 6, ... . Такой показатель также можно записать в виде: n = 2k , где k = 1, 2, 3, ... - натуральное. Свойства и графики таких функций даны ниже.

График степенной функции y = x n с натуральным четным показателем при различных значениях показателя степени n = 2, 4, 6, ... .

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x ≤ 0 монотонно убывает
при x ≥ 0 монотонно возрастает
Экстремумы: минимум, x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1 , y(-1) = (-1) n ≡ (-1) 2k = 1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 2 , квадратный корень:
при n ≠ 2 , корень степени n :

Степенная функция с целым отрицательным показателем, p = n = -1, -2, -3, ...

Рассмотрим степенную функцию y = x p = x n с целым отрицательным показателем степени n = -1, -2, -3, ... . Если положить n = -k , где k = 1, 2, 3, ... - натуральное, то ее можно представить в виде:

График степенной функции y = x n с целым отрицательным показателем при различных значениях показателя степени n = -1, -2, -3, ... .

Нечетный показатель, n = -1, -3, -5, ...

Ниже представлены свойства функции y = x n с нечетным отрицательным показателем n = -1, -3, -5, ... .

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -1 ,
при n < -2 ,

Четный показатель, n = -2, -4, -6, ...

Ниже представлены свойства функции y = x n с четным отрицательным показателем n = -2, -4, -6, ... .

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -2 ,
при n < -2 ,

Степенная функция с рациональным (дробным) показателем

Рассмотрим степенную функцию y = x p с рациональным (дробным) показателем степени , где n - целое, m > 1 - натуральное. Причем, n, m не имеют общих делителей.

Знаменатель дробного показателя - нечетный

Пусть знаменатель дробного показателя степени нечетный: m = 3, 5, 7, ... . В этом случае, степенная функция x p определена как для положительных, так и для отрицательных значений аргумента x . Рассмотрим свойства таких степенных функций, когда показатель p находится в определенных пределах.

Показатель p отрицательный, p < 0

Пусть рациональный показатель степени (с нечетным знаменателем m = 3, 5, 7, ... ) меньше нуля: .

Графики степенных функций с рациональным отрицательным показателем при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = -1, -3, -5, ...

Приводим свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -1, -3, -5, ... - нечетное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = -1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Четный числитель, n = -2, -4, -6, ...

Свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -2, -4, -6, ... - четное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Показатель p положительный, меньше единицы, 0 < p < 1

График степенной функции с рациональным показателем (0 < p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: -∞ < y < +∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вниз
при x > 0 : выпукла вверх
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 2, 4, 6, ...

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 < p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: 0 ≤ y < +∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно убывает
при x > 0 : монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вверх при x ≠ 0
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Знак: при x ≠ 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Показатель p больше единицы, p > 1

График степенной функции с рациональным показателем (p > 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 5, 7, 9, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 5, 7, 9, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 4, 6, 8, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 4, 6, 8, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 монотонно убывает
при x > 0 монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Знаменатель дробного показателя - четный

Пусть знаменатель дробного показателя степени четный: m = 2, 4, 6, ... . В этом случае, степенная функция x p не определена для отрицательных значений аргумента. Ее свойства совпадают со свойствами степенной функции с иррациональным показателем (см. следующий раздел).

Степенная функция с иррациональным показателем

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p . Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x . Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.


y = x p при различных значениях показателя p .

Степенная функция с отрицательным показателем p < 0

Область определения: x > 0
Множество значений: y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1 p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 < p < 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вверх
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Показатель больше единицы p > 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Вверх