Вероятное событие. Классическая вероятность и ее свойства

Различные определения вероятности случайного события

Теория вероятностей – математическая наука, которая по вероятностям одних событий позволяет оценивать вероятности других событий, связанных с первыми.

Подтверждением того, что понятие «вероятность события» не имеет определения, является тот факт, что в теории вероятностей существует несколько подходов к объяснению этого понятия:

Классическое определение вероятности случайного события.

Вероятность события равна отношению числа благоприятных событию исходов опыта к общему числу исходов опыта.

Где

Число благоприятных исходов опыта;

Общее числоисходов опыта.

Исход опыта называется благоприятным для события , если при этом исходе опыта появилось событие . Например, если событие - появление карты красной масти, то появление туза бубей – исход, благоприятный событию .

Примеры.

1) Вероятность выпадения 5 очков на грани кубика равна , поскольку кубик может упасть любой из 6 граней кверху, а 5 очков находятся только на одной грани.

2) Вероятность выпадения герба при однократном бросании монеты - , поскольку монета может упасть гербом или решкой – два исхода опыта, а герб изображен лишь на одной стороне монеты.

3) Если в урне 12 шаров, из которых 5 – черные, то вероятность вынуть черный шар - , поскольку всего исходов опята – 12, а благоприятных из них - 5

Замечание. Классическое определение вероятности применимо при двух условиях:

1) все исходы опыта должны быть равновероятными;

2) опыт должен иметь конечное число исходов.

На практике бывает сложно доказать, что события равновероятные: например,при произведении опыта с подбрасыванием монеты на результат опыта могут влиять такие факторы как несимметричность монеты, влияние ее формы на аэродинамические характеристики полета, атмосферные условия и т.д., кроме того, существуют опыты с бесконечным числом исходов.

Пример . Ребенок бросает мяч, и максимальное расстояние, на которое он может забросить мяч – 15 метров. Найти вероятность того, что мяч улетит за отметку 3 м.

Решение. Искомую вероятность предлагается считать, как отношение длины отрезка, находящегося за отметкой 3 м (благоприятная область) к длине всего отрезка (всевозможные исходы):

Пример. Точку случайным образом бросают в круг радиуса 1. Какова вероятность того, что точка попадет во вписанный в круг квадрат?

Решение. Под вероятностью того, что точка попадет в квадрат, понимают в данном случае отношение площади квадрата (благоприятной площади)к площади круга (общая площадь фигуры, куда бросают точку):

Диагональ квадрата равна 2 и выражается через его сторону по теореме Пифагора:

Аналогичные рассуждения проводят и в пространстве: если в теле объема случайным образом выбирается точка, то вероятность того, что точка окажется в части тела объема , вычисляется как отношение объема благоприятной части к общему объему тела:

Объединяя все случаи, можно сформулировать правило вычисления геометрической вероятности:

Если в некоторой области случайным образом выбирается точка, то вероятность того, что точка окажется в части этой области равна:

, где

Обозначает меру области: в случае отрезка – это длина, в случае плоской области – это площадь, в случае пространственного тела – это объем, на поверхности – площадь поверхности, на кривой – длина кривой.

Интересным приложением понятия геометрической вероятности является задача о встрече.

Задача. (О встрече)

Два студента договорились о встрече, например, в10 часов утра на следующих условиях: каждый приходит в любое время в течение часа с 10 до 11 и ждет 10 минут, после чего уходит. Какова вероятность встречи?

Решение. Проиллюстрируем условия задачи следующим образом: на оси отложим время, идущее для первого из встречающихся, а на оси - время, идущее для второго. Поскольку эксперимент длится один час, то по обеим осям отложим отрезки длины 1. Моменты времени, когда встречающиеся пришли одновременно, интерпретируется диагональю квадрата.

Пусть первый пришел в некоторый момент времени . Студенты встретятся, если время прибытия второго на место встречи заключается в промежутке

Рассуждая так для любого момента времени , получим, что область времени, интерпретирующая возможность встречи («пересечение времён»нахождения на нужном месте первого и второго студентов) находится между двумя прямыми: и . Вероятность встречи определяется по формуле геометрической вероятности:

В 1933 г. Колмогоров А.М. (1903 - 1987) предложил аксиоматический подход к построению и изложению теории вероятности, который стал общепринятымв настоящее время. При построении теории вероятности как формальной аксиоматической теории требуется не только ввести базовое понятие – вероятность случайного события, но и описать его свойства с помощью аксиом (утверждений интуитивно верных, принимаемых без доказательства).

Такими утверждениями являются утверждения, аналогичные свойствам относительной частоты появления события.

Относительной частотой появления случайного события называется отношение числа появлений события в испытаниях к общему числу проведенных испытаний:

Очевидно, , для достоверного события , для невозможного события , для несовместных событий и верно следующее:

Пример. Проиллюстрируем последнее утверждение. Пусть из колоды в 36 карт вынимают карты. Пусть событие означает появление бубей , событие означает появление червей, а событие - появление карты красной масти. Очевидно, события и несовместны. При появлении красной масти ставим метку возле события , при появлении бубей – возле события , а при появлении червей – возле события . Очевидно, что метка возле события будет поставлена тогда и только тогда, когда будет поставлена метка возле события или возле события , т.е. .

Назовем вероятностью случайного события число, сопоставленное событию по следующему правилу:

Для несовместных событий и

Итак,

Относительная частота

Вероятность показывает возможность того или иного события при определенном количестве повторений. Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

Шаги

Вероятность единичного случайного события

  1. Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.

    • Например, невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.
  2. Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.

    • Пример 1 . В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
    • Пример 2 . Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
  3. Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:

    • Пример 1 . Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
    • Пример 2 . В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
  4. Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.

    • Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
    • Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
  5. Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.

    • Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.

    Вероятность нескольких случайных событий

    1. При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.

      • Несколько выпадений пятерок называются независимыми событиями , поскольку то, что выпадет первый раз, не влияет на второе событие.
    2. Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий . Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.

      • Пример 1 . Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
        • После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
      • Пример 2 . В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?
        • Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
    3. Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим . Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5 . Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.

      • Пример 1 . Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
      • Пример 2 . В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие.

Вероятность события А обозначают через Р(А) (здесь Р – первая буква французского слова probabilite – вероятность).

В соответствии с определением

где – число элементарных исходов испытания, благоприятствующих появлению события ;

Общее число возможных элементарных исходов испытания.

Это определение вероятности называют классическим . Оно возникло на начальном этапе развития теории вероятностей.

Часто число называют относительной частотой появления события А в опыте.

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно , т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно .

Иногда вероятность выражают в процентах: Р(А) 100% есть средний процент числа появлений события A .

Пример 2.13. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Обозначим через А событие - «набрана нужная цифра».

Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна).

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Формула классической вероятности дает очень простой, не требующий проведения экспериментов, способ вычисления вероятностей. Однако простота этой формулы очень обманчива. Дело в том, что при ее использовании возникают, как правило, два очень непростых вопроса:

1. Как выбрать систему исходов опыта так, чтобы они были равновозможны, и можно ли это сделать вообще?

2. Как найти числа m и n ?

Если в опыте участвуют несколько предметов, равновозможные исходы увидеть не всегда просто.

Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами!

Пример 2.14. (ошибка Даламбера ). Подбрасываются две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону?

Решение Даламбера.

Опыт имеет три равновозможных исхода:

1. Обе монеты упадут на «орла»;

2. Обе монеты упадут на «решку»;

3. Одна из монет упадет на «орла», другая на «решку».

Правильное решение.

Опыт имеет четыре равновозможных исхода:

1. Первая монета упадет на «орла», вторая тоже на «орла»;

2. Первая монета упадет на «решку», вторая тоже на «решку»;

3. Первая монета упадет на «орла», а вторая - на «решку»;

4. Первая монета упадет на «решку», а вторая - на «орла».

Из них благоприятными для нашего события будут два исхода, поэтому искомая вероятность равна .

Даламбер совершил одну из самых распространенных ошибок, допускаемую при вычислении вероятности: он объединил два элементарных исхода в один, тем самым сделав его не равным по вероятности оставшимся исходам опыта.

Вряд ли многие люди задумываются, можно ли просчитать события, которые в той или иной мере случайны. Выражаясь простыми словами, реально ли узнать, какая сторона кубика в выпадет в следующий раз. Именно этим вопросом задались два великих ученых, положившие начало такой науке, как теория вероятности, вероятность события в которой изучается достаточно обширно.

Зарождение

Если попытаться дать определение такому понятию, как теория вероятности, то получится следующее: это один из разделов математики, который занимается изучением постоянства случайных событий. Ясное дело, данное понятие толком не раскрывает всю суть, поэтому необходимо рассмотреть ее более детально.

Хотелось бы начать с создателей теории. Как было выше упомянуто, их было двое, это и Именно они одни из первых попытались с использованием формул и математических вычислений просчитать исход того или иного события. В целом же зачатки этой науки проявлялись еще в средневековье. В то время разные мыслители и ученые пытались проанализировать азартные игры, такие как рулетка, кости и так далее, тем самым установить закономерность и процентное соотношение выпадения того или иного числа. Фундамент же был заложен в семнадцатом столетии именно вышеупомянутыми учеными.

Поначалу их труды нельзя было отнести к великим достижениям в этой области, ведь все, что они сделали, это были попросту эмпирические факты, а опыты ставились наглядно, без использования формул. Со временем получилось добиться больших результатов, которые появились вследствие наблюдения за бросанием костей. Именно этот инструмент помог вывести первые внятные формулы.

Единомышленники

Нельзя не упомянуть о таком человеке, как Христиан Гюйгенс, в процессе изучения темы, носящей название "теория вероятности" (вероятность события освещается именно в этой науке). Данная персона очень интересна. Он, так же как и представленные выше ученые, пытался в виде математических формул вывести закономерность случайных событий. Примечательно, что делал он это не совместно с Паскалем и Ферма, то есть все его труды никак не пересекались с этими умами. Гюйгенс вывел

Интересен тот факт, что его работа вышла задолго до результатов трудов первооткрывателей, а точнее, на двадцать лет раньше. Среди обозначенных понятий известнее всего стали:

  • понятие вероятности как величины шанса;
  • математическое ожидание для дискретных случаев;
  • теоремы умножения и сложения вероятностей.

Также нельзя не вспомнить который тоже внес весомый вклад в изучении проблемы. Проводя свои, ни от кого не зависящие испытания, он сумел представить доказательство закона больших чисел. В свою очередь, ученые Пуассон и Лаплас, которые работали в начале девятнадцатого столетия, смогли доказать изначальные теоремы. Именно с этого момента для анализа ошибок в ходе наблюдений начали использовать теорию вероятностей. Стороной обойти данную науку не смогли и русские ученые, а точнее Марков, Чебышев и Дяпунов. Они, исходя из проделанной работы великих гениев, закрепили данный предмет в качестве раздела математики. Трудились эти деятели уже в конце девятнадцатого столетия, и благодаря их вкладу, были доказаны такие явления, как:

  • закон больших чисел;
  • теория цепей Маркова;
  • центральная предельная теорема.

Итак, с историей зарождения науки и с основными персонами, повлиявшими на нее, все более или менее понятно. Сейчас же пришло время конкретизировать все факты.

Основные понятия

Перед тем как касаться законов и теорем, стоит изучить основные понятия теории вероятностей. Событие в ней занимает главенствующую роль. Данная тема довольно объемная, но без нее не удастся разобраться во всем остальном.

Событие в теории вероятности - этолюбая совокупность исходов проведенного опыта. Понятий данного явления существует не так мало. Так, ученый Лотман, работающий в этой области, высказался, что в данном случае речь идет о том, что «произошло, хотя могло и не произойти».

Случайные события (теория вероятности уделяет им особое внимание) - это понятие, которое подразумевает абсолютно любое явление, имеющее возможность произойти. Или же, наоборот, этот сценарий может не случиться при выполнении множества условий. Также стоит знать, что захватывают весь объем произошедших явлений именно случайные события. Теория вероятности указывает на то, что все условия могут повторяться постоянно. Именно их проведение получило название "опыт" или же "испытание".

Достоверное событие - это то явление, которое в данном испытании на сто процентов произойдет. Соответственно, невозможное событие - это то, которое не случится.

Совмещение пары действий (условно случай A и случай B) есть явление, которое происходит одновременно. Они обозначаются как AB.

Сумма пар событий А и В - это С, другими словами, если хотя бы одно из них произойдет (А или В), то получится С. Формула описываемого явления записывается так: С = А + В.

Несовместные события в теории вероятности подразумевают, что два случая взаимно исключают друг друга. Одновременно они ни в коем случае не могут произойти. Совместные события в теории вероятности - это их антипод. Здесь подразумевается, что если произошло А, то оно никак не препятствует В.

Противоположные события (теория вероятности рассматривает их очень подробно) просты для понимания. Лучше всего разобраться с ними в сравнении. Они почти такие же, как и несовместные события в теории вероятности. Но их отличие заключается в том, что одно из множества явлений в любом случае должно произойти.

Равновозможные события - это те действия, возможность повтора которых равна. Чтобы было понятней, можно представить бросание монеты: выпадение одной из ее сторон равновероятно выпадению другой.

Благоприятствующее событие легче рассмотреть на примере. Допустим, есть эпизод В и эпизод А. Первое - это бросок игрального кубика с появлением нечетного числа, а второе - появление числа пять на кубике. Тогда получается, что А благоприятствует В.

Независимые события в теории вероятности проецируются только на два и больше случаев и подразумевают независимость какого-либо действия от другого. Например, А - выпадение решки при бросании монеты, а В - доставание валета из колоды. Они и есть независимые события в теории вероятности. С этим моментом стало понятнее.

Зависимые события в теории вероятности также допустимы лишь для их множества. Они подразумевают зависимость одного от другого, то есть явление В может произойти только в том случае, если А уже произошло или же, наоборот, не произошло, когда это - главное условие для В.

Исход случайного эксперимента, состоящего из одного компонента, - это элементарные события. Теория вероятности поясняет, что это такое явление, которое совершилось лишь единожды.

Основные формулы

Итак, выше были рассмотрены понятия "событие", "теория вероятности", определение основным терминам этой науки также было дано. Сейчас же пришло время ознакомиться непосредственно с важными формулами. Эти выражения математически подтверждают все главные понятия в таком непростом предмете, как теория вероятности. Вероятность события и здесь играет огромную роль.

Начать лучше с основных И перед тем как приступить к ним, стоит рассмотреть, что это такое.

Комбинаторика - это в первую очередь раздел математики, он занимается изучением огромного количества целых чисел, а также различных перестановок как самих чисел, так и их элементов, различных данных и т. п., ведущих к появлению ряда комбинаций. Помимо теории вероятности, эта отрасль важна для статистики, компьютерной науки и криптографии.

Итак, теперь можно переходить к представлению самих формул и их определению.

Первой из них будет выражение для числа перестановок, выглядит оно следующим образом:

P_n = n ⋅ (n - 1) ⋅ (n - 2)…3 ⋅ 2 ⋅ 1 = n!

Применяется уравнение только в том случае, если элементы различаются лишь порядком расположения.

Теперь будет рассмотрена формула размещения, выглядит она так:

A_n^m = n ⋅ (n - 1) ⋅ (n-2) ⋅ ... ⋅ (n - m + 1) = n! : (n - m)!

Это выражение применимо уже не только лишь к порядку размещения элемента, но и к его составу.

Третье уравнение из комбинаторики, и оно же последнее, называется формулой для числа сочетаний:

C_n^m = n ! : ((n - m))! : m !

Сочетанием называются выборки, которые не упорядочены, соответственно, к ним и применяется данное правило.

С формулами комбинаторики получилось разобраться без труда, теперь можно перейти к классическому определению вероятностей. Выглядит это выражение следующим образом:

В данной формуле m - это число условий, благоприятствующих событию A, а n - число абсолютно всех равновозможных и элементарных исходов.

Существует большое количество выражений, в статье не будут рассмотрены все, но затронуты будут самые важные из них такие, как, например, вероятность суммы событий:

P(A + B) = P(A) + P(B) - эта теорема для сложения только несовместных событий;

P(A + B) = P(A) + P(B) - P(AB) - а эта для сложения только совместимых.

Вероятность произведения событий:

P(A ⋅ B) = P(A) ⋅ P(B) - эта теорема для независимых событий;

(P(A ⋅ B) = P(A) ⋅ P(B∣A); P(A ⋅ B) = P(A) ⋅ P(A∣B)) - а эта для зависимых.

Закончит список формула событий. Теория вероятностей рассказывает нам о теоремеБайеса, которая выглядит так:

P(H_m∣A) = (P(H_m)P(A∣H_m)) : (∑_(k=1)^n P(H_k)P(A∣H_k)),m = 1,...,n

В данной формуле H 1 , H 2 , …, H n - это полная группа гипотез.

Примеры

Если тщательно изучить любой раздел математики, в нем не обходится без упражнений и образцов решений. Так и теория вероятности: события, примеры здесь являются неотъемлемым компонентом, подтверждающим научные выкладки.

Формула для числа перестановок

Допустим, в карточной колоде есть тридцать карт, начиная с номинала один. Далее вопрос. Сколько есть способов сложить колоду так, чтобы карты с номиналом один и два не были расположены рядом?

Задача поставлена, теперь давайте перейдем к ее решению. Для начала нужно определить число перестановок из тридцати элементов, для этого берем представленную выше формулу, получается P_30 = 30!.

Исходя из этого правила, мы узнаем, сколько есть вариантов сложить колоду по-разному, но нам необходимо вычесть из них те, в которых первая и вторая карта будут рядом. Для этого начнем с варианта, когда первая находится над второй. Получается, что первая карта может занять двадцать девять мест - с первого по двадцать девятое, а вторая карта со второго по тридцатое, получается всего двадцать девять мест для пары карт. В свою очередь, остальные могут принимать двадцать восемь мест, причем в произвольном порядке. То есть для перестановки двадцати восьми карт есть двадцать восемь вариантов P_28 = 28!

В итоге получается, что если рассматривать решение, когда первая карта находится над второй, лишних возможностей получится 29 ⋅ 28! = 29!

Используя этот же метод, нужно вычислить число избыточных вариантов для того случая, когда первая карта находится под второй. Получается также 29 ⋅ 28! = 29!

Из этого следует, что лишних вариантов 2 ⋅ 29!, в то время как необходимых способов сбора колоды 30! - 2 ⋅ 29!. Остается только лишь посчитать.

30! = 29! ⋅ 30; 30!- 2 ⋅ 29! = 29! ⋅ (30 - 2) = 29! ⋅ 28

Теперь нужно перемножать между собой все числа от одного до двадцати девяти, после чего в конце умножить все на 28. Ответ получается 2,4757335 ⋅〖10〗^32

Решение примера. Формула для числа размещения

В данной задаче необходимо выяснить, сколько есть способов, чтобы поставить пятнадцать томов на одной полке, но при условии, что всего томов тридцать.

В этой задаче решение немного проще, чем в предыдущей. Используя уже известную формулу, необходимо вычислить суммарное число расположений из тридцати томов по пятнадцать.

A_30^15 = 30 ⋅ 29 ⋅ 28⋅... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ 16 = 202 843 204 931 727 360 000

Ответ, соответственно, будет равен 202 843 204 931 727 360 000.

Теперь возьмем задачу чуть сложнее. Необходимо узнать, сколько есть способов расставить тридцать книг на двух книжных полках, при условии, что на одной полке могут находиться лишь пятнадцать томов.

Перед началом решения хотелось бы уточнить, что некоторые задачи решаются несколькими путями, так и в этой есть два способа, но в обоих применена одна и та же формула.

В этой задаче можно взять ответ из предыдущей, ведь там мы вычислили, сколько раз можно заполнить полку на пятнадцать книг по-разному. Получилось A_30^15 = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ...⋅ 16.

Вторую же полку рассчитаем по формуле перестановки, ведь в нее помещается пятнадцать книг, в то время как всего остается пятнадцать. Используем формулу P_15 = 15!.

Получается, что в сумме будет A_30^15 ⋅ P_15 способов, но, помимо этого, произведение всех чисел от тридцати до шестнадцати надо будет умножить на произведение чисел от одного до пятнадцати, в итоге получится произведение всех чисел от одного до тридцати, то есть ответ равен 30!

Но эту задачу можно решить и по-иному - проще. Для этого можно представить, что есть одна полка на тридцать книг. Все они расставлены на этой плоскости, но так как условие требует, чтобы полок было две, то мы одну длинную пилим пополам, получается две по пятнадцать. Из этого получается что вариантов расстановки может быть P_30 = 30!.

Решение примера. Формула для числа сочетания

Сейчас будет рассмотрен вариант третьей задачи из комбинаторики. Необходимо узнать, сколько способов есть, чтобы расставить пятнадцать книг при условии, что выбирать необходимо из тридцати абсолютно одинаковых.

Для решения будет, конечно же, применена формула для числа сочетаний. Из условия становится понятным, что порядок одинаковых пятнадцати книг не важен. Поэтому изначально нужно выяснить общее число сочетаний из тридцати книг по пятнадцать.

C_30^15 = 30 ! : ((30-15)) ! : 15 ! = 155 117 520

Вот и все. Используя данную формулу, в кратчайшее время удалось решить такую задачу, ответ, соответственно, равен 155 117 520.

Решение примера. Классическое определение вероятности

С помощью формулы, указанной выше, можно найти ответ в несложной задаче. Но это поможет наглядно увидеть и проследить ход действий.

В задаче дано, что в урне есть десять абсолютно одинаковых шариков. Из них четыре желтых и шесть синих. Из урны берется один шарик. Необходимо узнать вероятность доставания синего.

Для решения задачи необходимо обозначить доставание синего шарика событием А. Данный опыт может иметь десять исходов, которые, в свою очередь, элементарные и равновозможные. В то же время из десяти шесть являются благоприятствующими событию А. Решаем по формуле:

P(A) = 6: 10 = 0,6

Применив эту формулу, мы узнали, что возможность доставания синего шарика равна 0,6.

Решение примера. Вероятность суммы событий

Сейчас будет представлен вариант, который решается с использованием формулы вероятности суммы событий. Итак, в условии дано, что есть два ящика, в первом находится один серый и пять белых шариков, а во втором - восемь серых и четыре белых шара. В итоге из первого и второго короба взяли по одному из них. Необходимо узнать, каков шанс того, что доставаемые шарики будут серого и белого цвета.

Чтобы решить данную задачу, необходимо обозначить события.

  • Итак, А - взяли серый шарик из первого ящика: P(A) = 1/6.
  • А’ - взяли белый шарик также из первого ящика: P(A") = 5/6.
  • В - извлекли серый шарик уже из второго короба: P(B) = 2/3.
  • В’ - взяли серый шарик из второго ящика: P(B") = 1/3.

По условию задачи необходимо, чтобы случилось одно из явлений: АВ’ или же А’В. Используя формулу, получаем: P(AB") = 1/18, P(A"B) = 10/18.

Сейчас была использована формула по умножению вероятности. Далее, чтобы узнать ответ, необходимо применить уравнение их сложения:

P = P(AB" + A"B) = P(AB") + P(A"B) = 11/18.

Вот так, используя формулу, можно решать подобные задачи.

Итог

В статье была представлена информация по теме "Теория вероятности", вероятность события в которой играет важнейшую роль. Конечно же, не все было учтено, но, исходя из представленного текста, можно теоретически ознакомиться с данным разделом математики. Рассматриваемая наука может пригодиться не только в профессиональном деле, но и в повседневной жизни. С ее помощью можно просчитать любую возможность какого-либо события.

В тексте были затронуты также знаменательные даты в истории становления теории вероятности как науки, и фамилии людей, чьи труды были в нее вложены. Вот так человеческое любопытство привело к тому, что люди научились просчитывать даже случайные события. Когда-то они просто заинтересовались этим, а сегодня об этом уже знают все. И никто не скажет, что ждет нас в будущем, какие еще гениальные открытия, связанные с рассматриваемой теорией, будут совершены. Но одно можно сказать точно - исследования на месте не стоят!

1. Изложение основных теорем и формул вероятностей: теорема сложения, условная вероятность, теорема умножения, независимость событий, формула полной вероятности.

Цели: создание благоприятных условий для введения понятия вероятности события; знакомство с основными теоремами и формулами теории вероятностей; ввести формулу полной вероятности.

Ход занятия:

Случайным экспериментом (опытом) называют процесс, при котором возможны различные исходы, причем заранее нельзя предсказать, каков будет результат. Возможные исключающие друг друга исходы опыта называются его элементарными событиями . Множество элементарных событий обозначим через W.

Случайным событием называется событие, о котором нельзя заранее сказать, произойдет оно в результате опыта или нет. Каждому случайному событию А, происшедшему в результате опыта, можно поставить в соответствие группу элементарных событий из W. Элементарные события, входящие в состав этой группы, называют благоприятствующими появлению события А.

Множество W также можно рассматривать как случайное событие. Поскольку оно включает все элементарные события, то обязательно произойдет в результате опыта. Такое событие называют достоверным .

Если для данного события нет благоприятствующих элементарных событий из W, то и результате опыта оно произойти не может. Такое событие называют невозможным.

События называют равновозможными , если в результате испытания обеспечиваются равные возможности осуществления этих событий. Два случайных события называются противоположными , если в результате проведения опыта одно из них происходит тогда и только тогда, когда не происходит другое. Событие, противоположное событию А, обозначают .

События А и В называют несовместными , если появление одного из них исключает появление другого. События А 1 , А 2 , ..., А n называют попарно несовместными, если любые два из них несовместны. События А 1 , А 2 , ..., Аn образуют полную систему попарно несовместных событий , если в результате испытания обязательно произойдет одно и только одно из них.

Суммой (объединением) событий А 1 , А 2 , ..., А n называется такое событие С, которое состоит в том, что произошло хотя бы одно из событий А 1 , А 2 , ..., А n Сумма событий обозначается следующим образом:

C = A 1 +A 2 +…+A n .

Произведением (пересечением) событий А 1 , А 2 , ..., А n называется такое событие П, которое состоит в том, что одновременно произошли все события А 1 , А 2 , ..., А n . Произведение событий обозначается

Вероятность Р(А) в теории вероятностей выступает как числовая характеристика степени возможности появления какого-либо определенного случайного события А при многократном повторении испытаний.



Допустим, при 1000 бросаний игральной кости цифра 4 выпадает 160 раз. Отношение 160/1000 = 0,16 показывает относительную частоту выпадений цифры 4 в данной серии испытаний. В более общем случае частотой случайного события А при проведении серии опытов называют отношение числа опытов, в которых произошло данное событие, к общему числу опытов:

где Р*(А) - частота события А; m - число опытов, в которых произошло событие А; n - общее число опытов.

Вероятностью случайного события А называют постоянное число, около которого группируются частоты данного события по мере увеличения количества опытов (статистическое определение вероятности события ). Вероятность случайного события обозначают Р(А).

Естественно, что никто и никогда не сможет проделать неограниченное число испытаний для того, чтобы определить вероятность. В этом нет и необходимости. Практически за вероятность можно принять частоту события при большом числе испытаний. Так, например, из статистических закономерностей рождения, установленных за много лет наблюдений, вероятность того события, что новорожденный будет мальчиком, оценивается в 0,515.

Если при испытании нет каких-либо причин, вследствие которых одно случайное событие появилось бы чаще других (равновозможные события ), можно определить вероятность исходя из теоретических соображений. Например, выясним в случае бросания монеты частоту выпадения герба (событие А). разными экспериментаторами при нескольких тысячах испытаний было показано, что относительная частота такого события принимает значения, близкие к 0,5. учитывая, что появление герба и противоположной стороны монеты (событие В) являются событиями равновозможными, если монета симметрична, суждение Р(А)=Р(В)=0,5 можно было бы сделать и без определения частоты этих событий. На основе понятия «равновозможности» событий формулируется другое определение вероятности.

Пусть рассматриваемое событие А происходит в m случаях, которые называются благоприятствующими А, и не происходит при остальных n-m, неблагоприятствующих А.

Тогда вероятность события А равна отношению количества благоприятствующих ему элементарных событий к их общему числу (классическое определение вероятности события ):

где m - количество элементарных событий, благоприятствующих событию А; n - Общее количество элементарных событий.

Рассмотрим несколько примеров:

Пример №1: В урне находится 40 шаров: 10 черных и 30 белых. Найти вероятность того, что наугад выбранный шар будет черным.

Число благоприятствующих случаев равно числу черных шаров в урне: m = 10. общее число равновозможных событий (вынимание одного шара) равна полному числу шаров в урне: n = 40. Эти события несовместны, так как вынимается один и только один шар. Р(А) = 10/40 = 0,25

Пример №2: найти вероятность выпадения четного числа при бросании игральной кости.

При бросании кости реализуется шесть равновозможных несовместных событий: появление одной цифры:1,2,3,4,5 или 6, т.е. n = 6. благоприятствующими случаями являются выпадение одной из цифр 2,4 или 6: m = 3. искомая вероятность Р(А) = m/N = 3/6 = ½.

Как видим из определения вероятности события, для всех событий

0 < Р(А) < 1.

Очевидно, что вероятность достоверного события равна 1, вероятность невозможного события равна 0.

Теорема сложения вероятностей: вероятность появления одного (безразлично какого) события из нескольких несовместных событий равна сумме их вероятностей.

Для двух несовместных событий А и В вероятностей этих событий равна сумме их вероятностей:

Р(А или В)=Р(А) + Р(В).

Пример №3: найти вероятность выпадения 1 ил 6 при бросании игральной кости.

Событие А (выпадение 1) и В(выпадение 6) являются равновозможными: Р(А) = Р(В) = 1/6, поэтому Р(А или В) = 1/6 + 1/6 = 1/3

Сложение вероятностей справедливо не только для двух, но и для любого числа несовместных событий.

Пример №4: в урне находится 50 шаров: 10 белых, 20 черных, 5 красных и 15 синих. Найти вероятность появления белого, или черного, или красного шара при однократной операции изъятия шара из урны.

Вероятность вынимания белого шара (событие А) равна Р(А) = 10/50 = 1/5, черного шара (событие В) равна Р(В) = 20/50 = 2/5 и красного шара (событие С) равно Р(С) = 5/50 = 1/10. Отсюда по формуле сложения вероятностей получим Р(А или В или С) = Р(А) +Р(В) =Р(С) = 1/5 + 2/5 + 1/10 = 7/10

Сумма вероятностей двух противоположных событий, как следует из теоремы сложения вероятностей, равна единице:

Р(А) + Р() = 1

В выше рассмотренном примере вынимание белого, черного и красного шара будет событием А 1 , Р(А 1) = 7/10. Противоположным событием 1 является доставание синего шара. Так как синих шаров 15, а общее количество шаров 50, то получаем Р( 1) = 15/50 = 3/10 и Р(А) + Р() = 7/10 +3/10 = 1.

Если события А 1 , А 2 , ..., А n образуют полную систему попарно несовместных событий, то сумма их вероятностей равна 1.

В общем случае вероятность суммы двух событий А и В вычисляется как

Р(А+В) = Р(А) + Р(В) - Р (АВ).

Теорема умножения вероятностей:

События А и В называются независимыми , если вероятность появления события А не зависит от того, произошло событие В или нет, и наоборот, вероятность появления события В не зависит от того, произошло событие А или нет.

Вероятность совместного появления независимых событий равна произведению их вероятностей . Для двух событий Р(А и В)=Р(А)·Р(В).

Пример: В одной урне 5 черных и 10 белых шаров, в другой 3 черных и 17 белых. Найти вероятность того, что при первом вынимании шаров из каждой урны оба шара окажутся черными.

Решение: вероятность вытаскивания черного шара из первой урны (событие А) – Р(А) = 5/15 = 1/3, черного шара из второй урны (событие В) – Р(В) = 3/20

Р(А и В)=Р(А)·Р(В) = (1/3)(3/20) = 3/60 = 1/20.

На практике нередко вероятность события В зависит оттого, произошло некоторое другое событие А или нет. В этом случае говорят об условной вероятности , т.е. вероятности события В при условии, что событие А произошло. Условную вероятность обозначают P(B/A).

Вверх