Какие явления называют механическими. Электрические явления в природе

Жизнь человека тесно связана с теп-ловыми явлениями . Он встречается с их проявлениями так же часто, как и с меха-ническими. Это — нагревание или охлажде-ние тел, зависимость их свойств от темпе-ратуры , изменение агрегатных состояний ве-щества и т. п. Поэтому с давних времен человечество старалось познать «тайну» теп-ловых явлений , объяснить их природу, ис-пользовать их в повседневной жизни. Сог-ласно древнегреческому мифу, Прометей был прикован к скале и обречен на вечные страдания за то, что похитил огонь с Олим-па и передал его людям.

Тепловые явления и процессы связаны с передачей и превра-щением энергии, обусловливаю-щими изменение температуры тел или переход вещества из одного агрегатного состояния в другое.

Сложилось так, что природа тепловых явлений объясняется в физике двумя спо-собами, взаимно дополняющими друг дру-га. Один из способов — так называемый термодинамический подход, который основывается на обобще-нии многовекового опыта наблюдений за протеканием тепловых явлений и процес-сов, и на формулировании общих прин-ципов их протекания. Термодинамический подход рассматривает теплоту с позиций макроскопических свойств вещества — дав-ления, температуры, объема, плотности и т. п. Он есть описательным способом изу-чения тепловых явлений, поскольку не прибегает к выяснению сути теплового движения. Другой способ — молекулярно-кинетическая теория вещества.

Термодинамика — это теория теплоты, которая объясняет природу тепловых явлений, не учитывая при этом молекуляр-ного строения вещества. Материал с сайта

В истории физики развитие представле-ний о природе теплоты происходило в по-стоянном противостоянии приверженцев тер-модинамического и молекулярно-кинетического подходов к объяснению тепловых яв-лений . Первые аргументировали преимущест-ва термодинамики относительной простотой описания тепловых явлений и процессов, особенно в расчетах технических устройств, выполняющих механическую работу за счет теплоты.

Законы термодинамики проще, чем молекулярно-кинетическая теория объясняют тепловые явления и процессы , однако требуют экс-периментального определения отдельных величин (например, теплоемкости)

На этой странице материал по темам:

  • Для чего нужна термодинамика в жизни обычных людей примеры явлений

  • Механика кратко

  • Тепловые явления тепловое движение объяснения с примерами

  • Тепловые явления в древнегреческих мифах

  • Физика тепловые явления в повседневной жизни

Вопросы по этому материалу:

Испокон веков человечество пыталось логично объяснить различные электрические явления, примеры которых они наблюдали в природе. Так, в древности молнии считались верным признаком гнева богов, средневековые мореплаватели блаженно трепетали перед огнями святого Эльма, а наши современники чрезвычайно боятся встречи с шаровыми молниями.

Всё это - электрические явления. В природе всё, даже мы с вами, несёт в себе Если объекты с большими зарядами разной полярности сближаются, то возникает физическое взаимодействие, видимым результатом которого становится окрашенный, как правило, в жёлтый или фиолетовый цвет поток холодной плазмы между ними. Её течение прекращается, как только заряды в обоих телах уравновешиваются.

Самые распространённые электрические явления в природе - молнии. Ежесекундно в поверхность Земли их ударяет несколько сотен. Молнии выбирают своей целью, как правило, отдельностоящие высокие объекты, поскольку, согласно физическим законам, для передачи сильного заряда требуется кратчайшее расстояние между грозовым облаком и поверхностью Земли. Чтобы обезопасить здания от попадания в них молний, их хозяева устанавливают на крышах громоотводы, которые представляют собой высокие металлические конструкции с заземлением, что при попадании молний позволяет отводить весь разряд в почву.


Ещё одно электрическое явление, природа которого очень долгое время оставалась неясной. Имели с ним дело в основном моряки. Проявляли огни себя следующим образом: при попадании корабля в грозу вершины его мачт начинали полыхать ярким пламенем. Объяснение явлению оказалось очень простым - основополагающую роль играло высокое напряжение электромагнитного поля, что всякий раз наблюдается перед началом грозы. Но не только моряки могут иметь дело с огнями. Пилоты крупных авиалайнеров также сталкивались с этим явлением, когда пролетали сквозь облака пепла, подброшенного в небо извержениями вулканов. Огни возникают от трения частиц пепла об обшивку.

И молнии, и огни святого Эльма - это электрические явления, которые видели многие, а вот с столкнуться удавалось далеко не каждому. Их природа так и не изучена до конца. Обычно очевидцы описывают шаровую молнию как яркое светящееся образование шарообразной формы, хаотично перемещающееся в пространстве. Три года назад была выдвинута теория, которая поставила под сомнение реальность их существования. Если ранее считалось, что разнообразные шаровые молнии - это электрические явления, то теория предположила, что они являются не чем иным, как галлюцинациями.


Есть ещё одно явление, имеющее электромагнитную природу - северное сияние. Оно возникает вследствие воздействия солнечного ветра на верхние Северное сияние похоже на всполохи самых разных цветов и фиксируется, как правило, в довольно высоких широтах. Есть, конечно, и исключения - если достаточно высока, то сияние могут видеть в небе и жители умеренных широт.

Электрические явления являются довольно интересным объектом исследования для физиков по всей планете, так как большинство из них требует подробного обоснования и серьёзного изучения.

Давайте рассмотрим, какие тепловые явления можно наблюдать субботним утром прохладного сентября.

Итак, рано проснувшись и приняв душ, мы сушим волосы потоком сухого горячего воздуха, создаваемого электрическим феном (испарение ).

Затем для комфорта включаем электрический камин, который дает дополнительное тепло (излучение) в том месте комнаты, где установлено наше любимое кресло. Конвекция происходит в комнате, когда включено отопление. Горячий воздух от батареи или камина поднимается, а холодный опускается.

Мы садимся в это кресло, укрывшись пушистым одеялом (закон теплопроводности ) и пьем горячий шоколад из кружки, материал которой плохо проводит тепло (опять закон теплопроводности ). А для нагревания воды мы использовали чайник.

Посмотрев по сторонам, мы делаем следующие выводы – дом построен по законам тепловых явлений, начиная с выбора материалов и заканчивая грамотным установлением систем теплоснабжения и вентиляции. Представьте только, если бы форточки находились внизу – да их удобно было бы открывать, но вот проветрить помещение было бы очень сложно. Материалы для стен домов используют пористые, чтобы воздух предохранял дом от перепадов температур.

А заглянув в кухню – мы увидим множество примеров тепловых явлений.

Практически во всех технологических процессах приготовления пищи можно наблюдать, как происходит теплопередача от одного продукта к другому, от плиты или печи к кастрюле или другой емкости.

В процессе нагревания будут принимать участие все три вида теплопередачи: от огня к сосуду – излучение, сквозь стенки сосуда к воде – теплопроводность, а сама вода прогревается путём конвекции.

Теплопроводность: Применение веществ с малой теплопроводностью: если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки изготовляют из пластмассы или другого сплава, обладающего малой теплопроводностью. У толстых, массивных чугунных сковородок дно прогревается более равномерно, чем у сделанных из тонкой стали. Те участки дна стальной посуды, которые располагаются непосредственно над огнём, прогреваются особенно сильно, и на них пища часто пригорает. Именно поэтому хозяйки выбирают сковородки с толстым дном, как правило, чугунные. Из походной алюминиевой кружки очень сложно пить горячий чай, а вот современный фаянс прекрасно справляется с этой задачей. Вы также знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. При этом чай отдаст часть своего тепла не только ложке, но и окружающему воздуху

Конвекция: Пищу готовят на плитах. Тёплый воздух от плит, от приготовленных блюд поднимается вверх, а холодный опускается вниз. При работе вентилятора наблюдается и вынужденная конвекция.

Излучение. Излучают энергию все тела: и сильно и слабо нагретые. Тела с тёмной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. Так, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в тёмном. Эти знания помогают экономить на электричестве при выборе посуды.

Вода на кухне присутствует во всех трёх состояниях: в газообразном – когда вода кипит, в жидком – когда в ней варят продукты, в твёрдом – в виде кубиков льда для напитков.

Плавление: Настоящий шоколад тает во рту – температура плавления какао масла близка к температуре плавления человеческого тела.

Испарение: Свойство уксуса – испаряясь, уничтожать резкие, неприятные запахи, - удобно использовать на кухне. Если налить на сковороду немного уксуса и поставить её на слабый огонь, то чад, запах жира, рыбы, чеснока скоро улетучится. Чтобы избавиться от неприятного запаха при варке капусты, нужно накрыть кастрюлю тряпкой, смоченной уксусом, а сверху - крышкой. В хлебнице, в столе, в подвесном шкафчике таким же образом можно избавиться от неприятного запаха залежалого хлеба.

Кипение: на кипении основано приготовление пищи в пароварках и мультиварках.

Подойдя к окну – мы также можем наблюдать очень много тепловых явлений.

Например, летом идёт дождь а зимой снег. Образуется роса на листьях. Появляется туман.

Вверх