Вихревое электрическое поле самоиндукция. Вихревое электрическое поле
Явление электромагнитной индукции было открыто М. Фарадеем в 1831 г. Явление можно наблюдать на следующих опытах. Возьмем катушку с большим числом витков (соленоид), замкнем ее с гальванометром, и будем вдвигать с одного из ее концов вдоль оси постоянный магнит. При этом в соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Этот ток прекратится при прекращении движения магнита. Если удалять магнит из соленоида, то в соленоиде снова возникнет ток, но уже противоположного направления. Это же явление будет иметь место, если магнит оставить неподвижным, а перемещать соленоид. Вместо магнита можно взять второй соленоид (рис. 51 ), по которому течет постоянный ток формула" src="http://hi-edu.ru/e-books/xbook785/files/I2.gif" border="0" align="absmiddle" alt=".
Явление электромагнитной индукции заключается в следующем: во всяком замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром, возникает электрический ток. Этот ток называется индукционным.
Возникновение индукционного тока в замкнутом контуре обусловлено появлением в этом контуре под влиянием изменяющегося со временем потока опред-е">электродвижущей силы ЭДС. Величина этой ЭДС была впервые связана со скоростью изменения потока магнитной индукции Фарадеем
опред-е">закон Фарадея
Знак минус в законе означает, что ЭДС индукции всегда имеет такое направление, что препятствует причине, которая ее вызывает. Это правило установил петербургский профессор Э.Х. Ленц.
Если рассмотреть магнитный поток формула" src="http://hi-edu.ru/e-books/xbook785/files/108-2.gif" border="0" align="absmiddle" alt=" (рис. 52, б ), либо направлен противоположно ему, если он возрастает пометка">В . Поток магнитной индукции через площадь S, ограниченную рамкой, равен
формула" src="http://hi-edu.ru/e-books/xbook785/files/109-1.gif" border="0" align="absmiddle" alt=" угол между нормалью к рамке и вектором В изменяется
формула" src="http://hi-edu.ru/e-books/xbook785/files/109-3.gif" border="0" align="absmiddle" alt=" Согласно закону Фарадея (12.1), при изменяющемся потоке сквозь рамку в ней возникает индукционный ток, который будет изменяться со временем с частотой, равной скорости вращения рамки формула" src="http://hi-edu.ru/e-books/xbook785/files/109-4.gif" border="0" align="absmiddle" alt="
Как видно, ЭДС индукции изменяется по гармоническому закону с частотой формула" src="http://hi-edu.ru/e-books/xbook785/files/109-5.gif" border="0" align="absmiddle" alt=" Получение ЭДС при вращении витка в магнитном поле лежит в основе работы генератора переменного тока.
Механизм возникновения индукционного тока в движущемся проводнике можно объяснить с помощью силы Лоренца F = qvB.
Под действием силы Лоренца происходит разделение зарядов: положительные накапливаются на одном конце проводника, отрицательные - на другом (рис. 53 ). Эти заряды создают внутри проводника электростатическое кулоновское поле. Если проводник разомкнут, то движение зарядов под действием силы Лоренца будет происходить до тех пор, пока электрическая сила не уравновесит силу Лоренца. Действие силы Лоренца аналогично действию некоторого электрического поля, это поле является сторонним полем.
Возникновение ЭДС индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Какова же природа сторонних сил (неэлектростатического происхождения) в данном случае?
Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Это поле характеризуется напряженностью (индекс указывает на причину возникновения этого поля - магнитного поля).
Циркуляция этого электрического поля пометка">L не равна нулю:
формула" src="http://hi-edu.ru/e-books/xbook785/files/111-1.gif" border="0" align="absmiddle" alt="
формула" src="http://hi-edu.ru/e-books/xbook785/files/111-2.gif" border="0" align="absmiddle" alt="
формула" src="http://hi-edu.ru/e-books/xbook785/files/111-5.gif" border="0" align="absmiddle" alt=" - частная производная индукции В по времени.
Для электростатического поля пометка">Q ) циркуляция вдоль любого замкнутого контура равна нулю:
опред-е">потенциальным.
Электрическое поле опред-е">вихревым, для него циркуляция вдоль замкнутого контура L не равна нулю:
пометка">I(t), то он создает магнитное поле с индукцией B(t), а следовательно, и поток формула" src="http://hi-edu.ru/e-books/xbook785/files/112.gif" border="0" align="absmiddle" alt="
Явление электромагнитной индукции, вызванное изменением тока в самом контуре, называют самоиндукцией. Ее первопричиной является изменение тока в контуре, которое легче измерить, чем изменение магнитного потока.
В любой точке поверхности, натянутой на контур, индукция dB пропорциональна току в контуре. Если ее проинтегрировать по всей поверхности, то полный магнитный поток пометка">I
пометка">L - индуктивность контура, коэффициент пропорциональности, зависящий от конфигурации контура.
Индуктивность показывает, какой магнитный поток пронизывает поверхность, охваченную контуром, при силе тока в нем 1 А. Ее единица - Вб/А, которая называется генри (Гн).
Если контур имеет сложную форму, например, содержит несколько витков, то вместо опред-е">потокосцепление формула" src="http://hi-edu.ru/e-books/xbook785/files/112-4.gif" border="0" align="absmiddle" alt="
выражение справедливо при L = const.
Из него следует еще одно определение L (более важное на практике): индуктивность показывает, какая ЭДС самоиндукции возникает в контуре, если скорость изменения силы тока в нем составляет 1 А/с.
Для соленоида магнитный поток через один виток пометка">N витков соленоида (потокосцепление),
пометка">V =Sl - объем соленоида.
Сравнивая это выражение с (12.4) , получим
формула" src="http://hi-edu.ru/e-books/xbook785/files/mu.gif" border="0" align="absmiddle" alt=".
Магнитный поток сквозь поверхность, охваченную контуром 2, может быть создан током иллюстрация" src="http://hi-edu.ru/e-books/xbook785/files/ris54.gif" border="0">
Обозначим формула" src="http://hi-edu.ru/e-books/xbook785/files/113.gif" border="0" align="absmiddle" alt="
формула" src="http://hi-edu.ru/e-books/xbook785/files/I1.gif" border="0" align="absmiddle" alt=" изменяется, то в контуре 2 индуцируется ЭДС взаимной индукции
формула" src="http://hi-edu.ru/e-books/xbook785/files/I2.gif" border="0" align="absmiddle" alt=" возникает ЭДС взаимной индукции
формула" src="http://hi-edu.ru/e-books/xbook785/files/113-3.gif" border="0" align="absmiddle" alt=" - взаимные индуктивности контуров, они зависят от геометрической формы, размеров, взаимного расположения контуров и магнитной проницаемости среды.
Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник (рис. 55 ). токами Фуко, или вихревыми токами.
Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка останавливается, если включить постоянный ток, питающий электромагнит. Вся ее энергия превращается в тепло, выделяемое токами Фуко. В неподвижной пластинке токи отсутствуют.
Вихревые токи могут быть значительно ослаблены, если в пластинке сделать разрезы, увеличивающие ее сопротивление. В сплошных сердечниках трансформаторов, электромоторов, работающих на переменном токе, токи Фуко выделяли бы значительное количество тепла. Поэтому сердечники делают наборными, составляя их из тонких пластин, разделенных слоем диэлектрика.
Явление возникновения индукционных токов Фуко лежит в основе работы индукционных печей, которые позволяют разогревать металлы до температуры плавления.
Токи Фуко подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Этот факт используется для успокоения подвижных частей различных приборов (демпфирование).
Вихревые токи возникают и в проводах, по которым течет переменный электрический ток. Направление вихревых токов таково, что они противодействуют изменению первичного тока в проводнике. Таким образом, переменный ток оказывается распределенным по сечению провода неравномерно, он как бы вытесняется на поверхность проводника. У поверхности провода плотность тока максимальна, а в глубь проводника убывает и достигает наименьшего значения на его оси. Это явление называют скин-эффектом (skin - кожа). Ток концентрируется в «кожице» проводника. Поэтому при больших частотах нет надобности в проводниках большого сечения: все равно ток будет идти лишь в поверхностном слое.
Переменное магнитное поле порождает индуцированное электрическое поле . Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле |
индукционное электрическое поле
|
1. создается неподвижными электр. зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты - потенциальное поле | 2. силовые линии замкнуты - вихревое поле |
3. источниками поля являются электр. заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции |
Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую структуру, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле. Может возникнуть вопрос: а почему, собственно, это поле называется электрическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд q точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля. Сила, действующая на заряд, по-прежнему равна F = qE, где Е - напряженность вихревого поля.
Если магнитный поток создается однородным магнитным полем, сконцентрированным в длинной узкой цилиндрической трубке радиусом г 0 (рис. 5.8), то из соображений симметрии очевидно, что линии напряженности электрического поля лежат в плоскостях, перпендикулярных линиям В, и представляют собой окружности. В соответствии с правилом Ленца при возрастании магнитной
индукции линии напряженности E образуют левый винт с направлением магнитной индукции B.
В отличие от статического или стационарного электрического поля работа вихревого поля на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Вихревое электрическое поле, так же как и магнитное поле, не потенциальное.
Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.
При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле.
В момент нарастания тока напряженность вихревого электрического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.
Это приводит к тому, что при замыкании цепи, содержащей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением времени (рис. 5.13). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.
Явление самоиндукции можно наблюдать на простых опытах. На рисунке 5.14 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую - последовательно с катушкой L с железным сердечником. При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения. Появление ЭДС самоиндукции при размыкании можно наблюдать на опыте с цепью, схематически показанной на рисунке 5.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр течет ток (штриховая стрелка), направленный против начального тока до размыкания (сплошная стрелка). Причем сила тока при размыкании цепи превосходит силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции ξ. больше ЭДС ξ is батареи элементов.
Явление самоиндукции подобно явлению инерции в механике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция его поддерживает некоторое время, несмотря на наличие сопротивления цепи.
Далее, чтобы увеличить скорость тела, согласно законам механики, нужно совершить работу. При торможении тело само совершает положительную работу. Точно так же для создания тока нужно совершить работу против вихревого электрического поля, а при исчезновении тока это поле само совершает положительную работу.
Это не просто внешняя аналогия. Она имеет глубокий внутренний смысл. Ведь ток - это совокупность движущихся заряженных частиц. При увеличении скорости электронов создаваемое ими магнитное поле меняется и порождает вихревое электрическое поле, которое действует на сами электроны, препятствуя мгновенному увеличению их скорости под действием внешней силы. При торможении, напротив, вихревое поле стремится поддержать скорость электронов постоянной (правило Ленца). Таким образом, инертность электронов, а значит, и их масса, по крайней мере частично, имеет электромагнитное происхождение. Масса не может быть полностью электромагнитной, так как существуют электрически нейтральные частицы, обладающие массой (нейтроны и др.)
Индуктивность.
Модуль В магнитной индукции, создаваемой током в любом замкнутом контуре, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В ~ I.
Можно, следовательно, утверждать, что
где L - коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индуктивностью контура или его коэффициентом самоиндукции.
Используя закон электромагнитной индукции и выражение (5.7.1), получим равенство:
(5.7.2) |
Из формулы (5.7.2) следует, что индуктивность - это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.
Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме
геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.
Единицу индуктивности в СИ называют генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1с возникает ЭДС самоиндукции 1 В:
Еще одним частным случаем электромагнитной индукции является взаимная индукция. Взаимной индукцией называют возникновение индукционного тока в замкнутом контуре (катушке) при изменении силы тока в соседнем контуре (катушке). Контуры при этом неподвижны друг относительно друга, как, например, катушки трансформатора.
Количественно взаимная индукция характеризуется коэффициентом взаимной индукции, или взаимной индуктивностью.
На рисунке 5.16 изображены два контура. При изменении силы тока I 1 в контуре 1 в контуре 2 возникает индукционный ток I 2 .
Поток магнитной индукции Ф 1,2 , созданный током в первом контуре и пронизывающий поверхность, ограниченную вторым контуром, пропорционален силе тока I 1:
Коэффициент пропорциональности L 1, 2 называется взаимной индуктивностью. Он аналогичен индуктивности L.
ЭДС индукции во втором контуре, согласно закону электромагнитной индукции, равна:
Коэффициент L 1,2 определяется геометрией обоих контуров, расстоянием между ними, их взаимным расположением и магнитными свойствами окружающей среды. Выражается взаимная индуктивность L 1,2 , как и индуктивность L, в генри.
Если сила тока меняется во втором контуре, то в первом контуре возникает ЭДС индукции
При изменении силы тока в проводнике в последнем возникает вихревое электрическое поле. Это поле тормозит электроны при возрастании силы тока и ускоряет при убывании.
Энергия магнитного поля тока.
При замыкании цепи, содержащей источник постоянной ЭДС, энергия источника тока первоначально расходуется на создание тока, т. е. на приведение в движение электронов проводника и образование связанного с током магнитного поля, а также отчасти на увеличение внутренней энергии проводника, т. е. на его нагревание. После того как установится постоянное значение силы тока, энергия источника расходуется исключительно на выделение теплоты. Энергия тока при этом уже не изменяется.
Для создания тока необходимо затратить энергию, т. е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа и идет на увеличение энергии тока. Вихревое поле совершает отрицательную работу.
При размыкании цепи ток исчезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.
Записать выражение для энергии тока I, текущего по цепи с индуктивностью L, можно на основании аналогии между инерцией и самоиндукцией.
Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль скорости тела в электродинамике играет сила тока I как величина, характеризующая движение электрических зарядов. Если это так, то энергию тока W m можно считать величиной, подобной кинетической энергии тела - в механике, и записать в виде.
Как же возникает электродвижущая сила в проводнике, который находится в переменном магнитном поле? Что такое вихревое электрическое поле, его природа и причины возникновения? Какие основные свойства этого поля? На все эти и многие другие вопросы ответит сегодняшний урок.
Тема: Электромагнитная индукция
Урок: Вихревое электрическое поле
Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.
Закон электромагнитной индукции
При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.
Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта - вихревого электрического поля .
Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е. из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток - значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.
Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды. Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер. Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды. Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.
Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое. Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике. Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).
Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде. Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля. Следовательно, это электрическое поле является вихревым - таким же, как и магнитное поле.
Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю. Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю. В случае вихревого поля работа по замкнутому контуру будет отлична от нуля. Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга. Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.
Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, - ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.
В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами. После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля. Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е. отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.
- Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
- Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
- Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
- Электронный учебник физики ().
- Классная физика ().
- Xvatit.com ().
- Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
- * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков - 4 см?
«Физика - 11 класс»
Самоиндукция.
Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией
.
По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.
Явление самоиндукции подобно явлению инерции в механике.
В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.
В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.
Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.
Энергия магнитного поля тока
По закону сохранения энергии энергия магнитного поля
, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.
При замыкании
цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.
При размыкании
цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.
Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле
Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.
Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: w м ~ В 2 ,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля w э ~ Е 2 .