Аг в периодической таблице 5 букв.

Thule – так во времена Римской империи называли Скандинавию, север Европы. Тулием назван элемент, открытый Клеве в 1879 г. Сначала Клеве нашел новые спектральные линии, а затем первым выделил из гадолинита бледно-зеленую окись элемента №69.

По данным академика А.П. Виноградова, тулий – самый редкий (если не считать прометия) из всех редкоземельных элементов. Содержание его в земной коре 8·10–5%. По тугоплавкости тулий второй среди лантаноидов: температура его плавления 1550...1600°C (в справочниках приводятся разные величины; дело, видимо, в неодинаковой чистоте образцов). Лишь лютецию уступает он и по температуре кипения. Несмотря на минимальную распространенность, тулий нашел практическое применение раньше, чем многие более распространенные лантаноиды. Известно, например, что микропримеси тулия вводят в полупроводниковые материалы (в частности, в арсенид галлия) и в материалы для лазеров. Но, как это ни странно, важнее, чем природный стабильный тулий (изотоп 169Tm), для нас оказался радиоактивный тулий-170.

Тулий-170 образуется в атомных реакторах при облучении нейтронами природного тулия. Этот изотоп с периодом полураспада 129 дней излучает сравнительно мягкие гамма-лучи с энергией 84 кэВ (энергия жесткого гамма-излучения измеряется не килоэлектронвольтами, а МэВами – миллионами электронвольт).

На основе этого изотопа были созданы компактные рентгенопросвечивающие установки, имеющие массу преимуществ перед обычными рентгеновскими аппаратами. В отличие от них тулиевые аппараты не нуждаются в электропитании, они намного компактнее, легче, проще по конструкции. Миниатюрные тулиевые приборы пригодны для рентгенодиагностики в тех тканях и органах, которые трудно, а порой и невозможно просвечивать обычными рентгеновскими аппаратами.

Гамма-лучами тулия просвечивают не только живые ткани, но и металл. Тулиевые гамма-дефектоскопы очень удобны для просвечивания тонкостенных деталей и сварных швов. При работе с образцами толщиной не больше 6 мм эти дефектоскопы наиболее чувствительны. С помощью тулия-170 были обнаружены совершенно незаметные письмена и символические знаки на бронзовой прокладке ассирийского шлема IX в. до н.э. Шлем обернули фотопленкой и стали просвечивать изнутри мягкими гамма-лучами тулия. На проявленной пленке появились стертые временем знаки...

Кроме дефектоскопов, препараты тулия-170 используют в приборах, называемых мутнометрами. По рассеянию гамма-лучей этими приборами определяют количество взвешенных частиц в жидкости.

Для тулиевых приборов характерны компактность, надежность, быстродействие. Единственный их недостаток – сравнительно малый период полураспада тулия-170. Но тут уж, как говорится, ничего не попишешь.

Тулиевые гамма-источники становятся дешевле по мере увеличения их производства. Еще в 1961 г. в нашей стране выпускались тулиевые источники пяти типов, и стоили они от 5,5 до 250 рублей. А килограмм металлического стабильного тулия в то же время стоил более 25 тыс. рублей.

Новая, более совершенная технология получения лантаноидов позволила в последнее время значительно уменьшить цены на них. В 1970 г. цена тулия составляла уже 13 тыс. рублей за килограмм. Но, и став почти вдвое дешевле, он по-прежнему остается самым редким и самым дорогим из всех лантаноидов.

Бор (лат. Borum), В, химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-чёрного цвета (очень чистый Б. бесцветен). Природный Б. состоит из двух стабильных изотопов: 10 B (19%) и 11 B (81%). Ранее других известное соединение Б. - бура - упоминается в сочинениях алхимиков под арабским названием "бурак" и латинским Borax, откуда и произошло наименование "бор". Свободный Б. (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 нагреванием борного ангидрида B 2 O 3 с металлическим калием. Общее содержание Б. в земной коре 3*10 -4 % по массе. В природе Б. в свободном состоянии не обнаружен. Многие соединения Б. широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Б. входит в состав многих изверженных и осадочных пород. Соединения Б. найдены в нефтяных водах, морской воде, соляных озёрах, горячих источниках, в вулканических и сопочных грязях, во многих почвах. О главных природных соединениях Б., служащих для его промышленного получения, см. в ст. Бораты природные .

Физические и химические свойства. Известно несколько кристаллических модификаций Б. Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Б. образуют в этих структурах трёхмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твёрдость Б. Однако строение каркаса в структурах Б. гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Б. служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Б. (рис. , а). Икосаэдры соединяются между собой как непосредственно (рис. , б), так и посредством промежуточных атомов Б., не входящих в состав какого-либо икосаэдра (рис. , в). При таком строении оказывается, что атомы Б. в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних "соседей" и 2 более далёких). Т. к. на внешней оболочке атома Б. находятся всего 3 электрона (электронная конфигурация 2s 2 2p), на каждую присутствующую в кристаллическом Б. связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Б. осуществляется особый тип ковалентной связи - многоцентровая связь с дефицитом электронов. В соединениях ионного типа Б. 3-валентен. Так называемый "аморфный" Б., получаемый при восстановлении B 2 O 3 металлическим натрием или калием, имеет плотность 1,73 г/см 3 . Чистый кристаллический Б. имеет плотность 2,3 г/см 3 , температуру плавления 2075 °C, температуру кипения 3860 °C; твёрдость Б. по минералогической шкале 9, микротвёрдость 34 Гн/м 2 (3400 кгс/мм 2). Кристаллический Б. - полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°C электрическая проводимость Б. увеличивается на несколько порядков, причём знак проводимости меняется (электронная - при низких температурах, дырочная - при высоких) (см. Полупроводниковые материалы ).

Химически Б. при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причём кристаллический Б. менее активен, чем аморфный. С повышением температуры активность Б. возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700 °C Б. горит красноватым пламенем, образуя борный ангидрид B 2 O 3 - бесцветную стекловидную массу. При нагревании выше 900 °C Б. с азотом образует бора нитрид BN, при нагревании с углём - бора карбид B 4 C, с металлами - бориды . С водородом Б. заметно не реагирует; его гидриды (бороводороды ) получают косвенным путём. При температуре красного каления Б. взаимодействует с водяным паром: 2B + 3Н 2 О = B 2 O 3 + 3H 2 . В кислотах Б. при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты H 3 BO 3 . Медленно растворяется в концентрированных растворах щелочей с образованием боратов.

Во фториде BF 3 и других галогенидах Б. связан с галогенами тремя ковалентными связями. Поскольку для завершения устойчивой 8-электронной оболочки атому Б. в галогениде BX 3 недостаёт пары электронов, молекулы галогенидов, особенно BFз, присоединяют молекулы других веществ, имеющие свободные электронные пары, например аммиака

В таких комплексных соединениях атом Б. окружен четырьмя атомами (или группами атомов), что соответствует характерному для Б. в его соединениях координационному числу 4. Важные комплексные соединения Б. - борогидриды , например Na , и фтороборная, или борофтористоводородная, кислота H , образующаяся из BF 3 и HF; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, Rb, Cs). Общая особенность самого Б. и его соединений - их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в HF с образованием газообразного BF 3 (кремниевая даёт SiF 4). Бороводороды напоминают кремневодороды, а карбид Б. - карбид кремния, и т.д. Представляет интерес особое сходство модификаций нитрида BN с графитом или алмазом. Это связано с тем, что атомы В и N по электронной конфигурации совместно имитируют 2 атома С (у В - 3 валентных электрона, у N - 5, у двух атомов С - по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Б. и азот. Так, боразан BH 3 -NH 3 подобен этану СН 3 -СН 3 , а боразен BH 2 =NH 2 и простейший боразин BHºNH подобны соответственно этилену СН 2 =СН 2 и ацетилену CHºCH. Если тримеризация ацетилена C 2 H 2 даёт бензол C 6 H 6 , то аналогичный процесс приводит от боразина BHNH к боразолу B 3 N 3 H 6 (см. также Борорганические соединения ).

Получение и применение. Элементарный Б. из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а её обезвоживанием - борный ангидрид. Восстановление В 2 О 3 металлическим магнием даёт Б. в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Б., необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают BCl 3 водородом при 1200°C или разлагают пары BBr 3 на танталовой проволоке, раскалённой до 1500°C. Чистый Б. получают также термическим разложением бороводородов.

Б. в небольших количествах (доли %) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001-0,003% Б. повышает её прочность (обычно в сталь вводят Б. в виде ферробора , т. е. сплава железа с 10-20% Б.). Поверхностное насыщение стальных деталей бором (до глубины 0,1-0,5 мм ) улучшает не только механические свойства, но и стойкость стали против коррозии (см. Борирование ). Благодаря способности изотопа 10 В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов , служащих для прекращения или замедления реакции деления. Б. в виде газообразного BF 3 используют в счётчиках нейтронов. (При взаимодействии ядер 10 В с нейтронами образуются заряженные a-частицы, которые легко регистрировать; число же a-частиц равно числу нейтронов, поступивших в счётчик: 10 5 B + 1 0 n = 7 3 Li + 4 2 a) (см. также Нейтронные детекторы и индикаторы ). Сам Б. и его соединения - нитрид BN, карбид B 4 C, фосфид ВР и др. - применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и её соли (прежде всего бура), бориды и др. BF 3 - катализатор некоторых органических реакций.

Лит.: Некрасов Б. В., Основы общей химии, т. 2, М., 1967; Щукарев С. А., Лекции по курсу общей химии, т. 2, Л., 1964; Бор, его соединения и сплавы, К., 1960.

? В. Л. Василевский.

Б. в организме. Б. относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли % на сухую массу). Б. необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Б. - отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Б. падает урожай семян. Известны многие болезни, связанные с недостатком Б., например гниль сердечка сахарной свёклы, чёрная пятнистость столовой свёклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Б. замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Б. является необходимым элементом, пока неизвестны. По данным М. Я. Школьника, при недостатке Б. у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования , вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Б. в почве в неё вносят борные удобрения (см. Микроудобрения ). В биогеохимических провинциях с избытком Б. в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Б., - гигантизм, карликовость, нарушение точек роста и др. На почвах с интенсивным борным засолением встречаются участки, лишённые растительности, "плешины", - один из поисковых признаков месторождения Б. Значение Б. в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Б. (60-600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта - борный энтерит.

Лит.: Скок Дж., функция бора в растительной клетке, в кн.: Микроэлементы, пер. с англ., М., 1962: Ковальский В. В., Ананичев А. В., Шахова И. К., Борная биогеохимическая провинция Северо-Западного Казахстана, "Агрохимия", 1965, · 11.

? В. В. Ковальский.

Таблица Менделеева является одним из величайших открытий человечества, позволившим упорядочить знания об окружающем мире и открыть новые химические элементы . Она является необходимой для школьников, а так же для всех, кто интересуется химией. Кроме того, данная схема является незаменимой и в других областях науки.

Данная схема содержит все известные человеку элементы, причем они группируются в зависимости от атомной массы и порядкового номера . Эти характеристики влияют на свойства элементов. Всего в коротком варианте таблицы имеется 8 групп, элементы, входящие в одну группу, обладают весьма сходными свойствами. Первая группа содержит водород, литий, калий, медь, латинское произношение на русском которой купрум. А так же аргентум — серебро, цезий, золото — аурум и франций. Во второй группе расположены бериллий, магний, кальций, цинк, за ними идут стронций, кадмий, барий, заканчивается группа ртутью и радием.

В состав третьей группы вошли бор, алюминий, скандий, галлий, потом следуют иттрий, индий, лантан, завершается группа таллием и актинием. Четвертая группа начинается с углерода, кремния, титана, продолжается германием, цирконием, оловом и завершается гафнием, свинцом и резерфордием. В пятой группе имеются такие элементы, как азот, фосфор, ванадий, ниже расположены мышьяк, ниобий, сурьма, потом идут тантал висмут и завершает группу дубний. Шестая начинается с кислорода, за которым лежат сера, хром, селен, потом следуют молибден, теллур, далее вольфрам, полоний и сиборгий.

В седьмой группе первый элемент – фтор, потом следует хлор, марганец, бром, технеций, за ним находится йод, потом рений, астат и борий. Последняя группа является самой многочисленной . В нее входят такие газы, как гелий, неон, аргон, криптон, ксенон и радон. Так же к данной группе относятся металлы железо, кобальт, никель, родий, палладий, рутений, осмий, иридий, платина. Далее идут ханний и мейтнерий. Отдельно расположены элементы, которые образуют ряд актиноидов и ряд лантаноидов . Они обладают сходными свойствами с лантаном и актинием.


Данная схема включает в себя все виды элементов, которые делятся на 2 большие группы – металлы и неметаллы , обладающие разными свойствами. Как определить принадлежность элемента к той или иной группе, поможет условная линия, которую необходимо провести от бора к астату. Следует помнить, что такую линию можно провести только в полной версии таблицы. Все элементы, которые находятся выше этой линии, и располагаются в главных подгруппах считаются неметаллами. А которые ниже, в главных подгруппах – металлами. Так же металлами являются вещества, находящиеся в побочных подгруппах . Существуют специальные картинки и фото, на которых можно детально ознакомиться с положением этих элементов. Стоит отметить, что те элементы, которые находятся на этой линии, проявляют одинаково свойства и металлов и неметаллов.

Отдельный список составляют и амфотерные элементы, которые обладают двойственными свойствами и могут образовывать в результате реакций 2 вида соединений. При этом у них проявляются одинаково как основные, так и кислотные свойства . Преобладание тех или иных свойств зависит от условий реакции и веществ, с которыми амфотерный элемент реагирует.


Стоит отметить, что данная схема в традиционном исполнении хорошего качества является цветной. При этом разными цветами для удобства ориентирования обозначаются главные и побочные подгруппы . А так же элементы группируются в зависимости от схожести их свойств.
Однако в настоящее время наряду с цветной схемой очень распространенной является периодическая таблица Менделеева черно белая. Такой ее вид используется для черно-белой печати. Несмотря на кажущуюся сложность, работать с ней так же удобно, если учесть некоторые нюансы. Так, отличить главную подгруппу от побочной в таком случае можно по отличиям в оттенках, которые хорошо заметны. К тому же в цветном варианте элементы с наличием электронов на разных слоях обозначаются разными цветами .
Стоит отметить, что в одноцветном исполнении ориентироваться по схеме не очень трудно. Для этого будет достаточно информации, указанной в каждой отдельной клеточке элемента.


Егэ сегодня является основным видом испытания по окончанию школы, а значит, подготовке к нему необходимо уделять особое внимание. Поэтому при выборе итогового экзамена по химии , необходимо обратить внимание на материалы, которые могут помочь в его сдаче. Как правило, школьникам на экзамене разрешено пользоваться некоторыми таблицами, в частности, таблицей Менделеева в хорошем качестве. Поэтому, чтобы она принесла на испытаниях только пользу, следует заблаговременно уделить внимание ее строению и изучению свойств элементов, а так же их последовательности. Необходимо научиться, так же пользоваться и черно-белой версией таблицы , чтобы на экзамене не столкнуться с некоторыми трудностями.


Помимо основной таблицы, характеризующей свойства элементов и их зависимость от атомной массы, существуют и другие схемы, которые могут оказать помощь при изучении химии. Например, существуют таблицы растворимости и электроотрицательности веществ . По первой можно определить, насколько растворимо то или иное соединение в воде при обычной температуре. При этом по горизонтали располагаются анионы – отрицательно заряженные ионы, а по вертикали – катионы, то есть положительно заряженные ионы. Чтобы узнать степень растворимости того, или иного соединения, необходимо по таблице найти его составляющие. И на месте их пересечения будет нужное обозначение.

Если это буква «р», то вещество полностью растворимо в воде в нормальных условиях. При наличии буквы «м» — вещество малорастворимое, а при наличии буквы «н» — оно почти не растворяется. Если стоит знак «+», — соединение не образует осадок и без остатка реагирует с растворителем. Если присутствует знак «-», это означает, что такого вещества не существует. Иногда так же в таблице можно увидеть знак «?», тогда это обозначает, что степень растворимости этого соединения доподлинно не известна. Электроотрицательность элементов может варьироваться от 1 до 8, для определения этого параметра так же существует специальная таблица.

Еще одна полезная таблица – ряд активности металлов. В нем располагаются все металлы по увеличении степени электрохимического потенциала. Начинается ряд напряжения металлов с лития, заканчивается золотом. Считается, что чем левее занимает место в данном ряду металл, тем он более активен в химических реакциях. Таким образом, самым активным металлом считается металл щелочного типа литий. В списке элементов ближе к концу так же присутствует водород. Считается, что металлы, которые расположены после него, являются практически неактивными. Среди них такие элементы, как медь, ртуть, серебро, платина и золото.

Таблица Менделеева картинки в хорошем качестве

Данная схема является одним из крупнейших достижений в области химии. При этом существует немало видов этой таблицы – короткий вариант, длинный, а так же сверхдлинный. Самой распространенной является короткая таблица, так же часто встречается и длинная версия схемы. Стоит отметить, что короткая версия схемы в настоящее время не рекомендуется ИЮПАК для использования.
Всего было разработано больше сотни видов таблицы , отличающихся представлением, формой и графическим представлением. Они используются в разных областях науки, либо совсем не применяются. В настоящее время новые конфигурации схемы продолжают разрабатываться исследователями. В качестве основного варианта используется либо короткая, либо длинная схема в отличном качестве.

Вверх