Биология размножение бактерий. Половой процесс у бактерий

Некоторые микроорганизмы размножаются спорообразовани-ем (актиномицеты и грибы) и почкованием (дрожжи), у некоторых микроорганизмов наблюдается половое размножение, но большин-ство из них размножается бесполым (вегетативным) путем. При благоприятных условиях размножение протекает с необыкновен-ной быстротой — каждые 20-30 минут материнская бактериальная клетка делится на две дочерние. Дочерняя клетка со временем становится материнской и также делится. Таким образом, деление бактерий идет в геометрической прогрессии. Если бы такое деле-ние шло беспрепятственно, то через 48 часов одна бактерия могла бы дать потомство в сотни биллионов клеток, а через пять дней такую массу, которая заполнила бы собой бассейны всех морей и океанов. Однако этого не происходит, поскольку на микроорганиз-мы действуют различные факторы окружающей среды.

Делению клетки предшествует равномерное увеличение об-щего азота, РНК и белка в цитоплазме. Затем происходит реплика-ция (удвоение) ДНК. В делящейся клетке между спиралями ДНК разрываются водородные связи и образуются одиночные дочер-ние спирали ДНК (рис.25).

Рис. 25. Процесс бинарного деления па-лочковидных прокариот

3 -вытягивание клетки;

— формирование перегородки;

5 -разделение клеток.

Сразу после репликации ДНК начинается вытяжение клетки и образование поперечной перегородки за счет двух слоев цитоплазматической мембраны, выпячивающейся навстречу друг другу. Чаще всего перегородка образуется посередине материнской клетки, в результате чего дочерние клетки имеют примерно одинако-вые размеры. Между слоями перегородки идет формирование кле-точной стенки.

В процессе размножения одна из половин клетки постоянно сохраняет жгутики. На конечном этапе размножения бактерий жгу-тики вырастают и у другой половины.

Рост и размножение микроорганизмов зависит от различных факторов окружающей среды и видовых характеристик. Наблюде-ние за развитием микроорганизмов, культивируемых в жидкой пи-тательной среде в замкнутых резервуарах, показывает, что для роста биомассы необходимы наличие источника энергии, присут-ствие компонентов, необходимых для синтеза биомассы, отсутствие в среде ингибиторов, подавляющих рост клеток, поддержание в среде необходимых физико-химических условий. В этих условиях рост микроорганизмов условно можно подразделить на несколько последовательных фаз или периодов (рис. 26):

1. лаг-фаза (англ. lag — запаздывание) — период между посевом бактерий и началом размножения. В этот период происходит адап-тация бактериальной культуры к питательной среде. Она проявля-ется в накоплении оптимального количества необходимых фермен-тов, в инактивации некоторого ингибитора, присутствующего в сре-де, в прорастании спор и др. При благоприятных условиях бактерии увеличиваются в размерах и готовятся к делению. Лаг-фаза мо-жет длиться от 10 минут до нескольких часов, но в среднем она составляет 4-5 часов.

3. Фаза логарифмического или экспоненциального роста явля-ется периодом наиболее интенсивного деления бактерий. Бактерии делятся каждые 20-40 минут. Во время этой фазы бактерии осо-бенно ранимы, что объясняется высокой чувствительностью рас-тущих клеток к факторам окружающей среды. Продолжительность экспоненциального роста зависит от концентрации питательных ве-ществ в субстрате и в среднем составляет 5-6 часов.

5. Фаза стационарного роста вызывается постепенным исто-щением среды, накоплением в ней литических ферментов, хими-ческим ингибированием роста микробной клетки продуктами ме-таболизма. Эта фаза отличается от предыдущей повышенной со-противляемостью бактерий многим химическим и физическим фак-торам. К началу этой фазы количество жизнеспособных клеток достигает максимального уровня и остается на этом максимуме в течение нескольких часов в зависимости от вида микроорганизмов и особенностей их культивирования. В конце этой фазы у некоторых микроорганизмов наблюдается процесс спорообразования.

6. Завершающая фаза процесса размножения — фаза старения и гибели — характеризуется отмиранием бактерий из-за истощения питательной среды и накопления в ней продуктов метаболизма. Наблюдается автолиз микроорганизмов как экстремальное прояв-ление нестабильности клетки после прекращения роста. Продол-жительность этой фазы может составлять от нескольких часов до нескольких недель.

Дата публикования: 2015-11-01; Прочитано: 2315 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Бактерии, как и все живые организмы, размножаются. Проис-ходит это чаще всего путем простого поперечного деления в раз-личных плоскостях. При этом образуются разнообразные сочетания клеток: парные соединения, одиночные клетки, гроздья, цепочки, пакеты и др.

Некоторые микроорганизмы размножаются спорообразовани-ем (актиномицеты и грибы) и почкованием (дрожжи), у некоторых микроорганизмов наблюдается половое размножение, но большин-ство из них размножается бесполым (вегетативным) путем.

При благоприятных условиях размножение протекает с необыкновен-ной быстротой — каждые 20-30 минут материнская бактериальная клетка делится на две дочерние. Дочерняя клетка со временем становится материнской и также делится.

Таким образом, деление бактерий идет в геометрической прогрессии. Если бы такое деле-ние шло беспрепятственно, то через 48 часов одна бактерия могла бы дать потомство в сотни биллионов клеток, а через пять дней такую массу, которая заполнила бы собой бассейны всех морей и океанов. Однако этого не происходит, поскольку на микроорганиз-мы действуют различные факторы окружающей среды.

Делению клетки предшествует равномерное увеличение об-щего азота, РНК и белка в цитоплазме.

Затем происходит реплика-ция (удвоение) ДНК. В делящейся клетке между спиралями ДНК разрываются водородные связи и образуются одиночные дочер-ние спирали ДНК (рис.25).

25. Процесс бинарного деления па-лочковидных прокариот

1 — образование одиночных спиралей ДНК;

2 — удвоение (репликация) ДНК;

3 -вытягивание клетки;

— формирование перегородки;

4 — окончание формирования перего-родки и образование выпуклой клеточной стенки;

5 -разделение клеток.

Сразу после репликации ДНК начинается вытяжение клетки и образование поперечной перегородки за счет двух слоев цитоплазматической мембраны, выпячивающейся навстречу друг другу.

Чаще всего перегородка образуется посередине материнской клетки, в результате чего дочерние клетки имеют примерно одинако-вые размеры. Между слоями перегородки идет формирование кле-точной стенки.

Одиночная спираль ДНК в новых клетках служит матрицей для создания второй спирали, в результате чего образуется двой-ная спираль ДНК с восстановленными водородными связями и формируется новый нуклеоид.

В процессе размножения одна из половин клетки постоянно сохраняет жгутики.

На конечном этапе размножения бактерий жгу-тики вырастают и у другой половины.

Рост и размножение микроорганизмов зависит от различных факторов окружающей среды и видовых характеристик. Наблюде-ние за развитием микроорганизмов, культивируемых в жидкой пи-тательной среде в замкнутых резервуарах, показывает, что для роста биомассы необходимы наличие источника энергии, присут-ствие компонентов, необходимых для синтеза биомассы, отсутствие в среде ингибиторов, подавляющих рост клеток, поддержание в среде необходимых физико-химических условий.

В этих условиях рост микроорганизмов условно можно подразделить на несколько последовательных фаз или периодов (рис. 26):

Рис. 26. Типичная кривая роста популяции микроорганизмов 1 — лаг-фаза;

2 — фаза ускоренного роста; 3 — фаза логарифмического (экспоненциального) роста;

4 — фаза замедления роста; 5 — фаза стационар-ного роста; 6 — фаза старения и отмирания.

лаг-фаза (англ. lag — запаздывание) — период между посевом бактерий и началом размножения. В этот период происходит адап-тация бактериальной культуры к питательной среде. Она проявля-ется в накоплении оптимального количества необходимых фермен-тов, в инактивации некоторого ингибитора, присутствующего в сре-де, в прорастании спор и др. При благоприятных условиях бактерии увеличиваются в размерах и готовятся к делению.

Лаг-фаза мо-жет длиться от 10 минут до нескольких часов, но в среднем она составляет 4-5 часов.

2. Фаза ускоренного роста наблюдается после лаг-фазы и характеризуется нарастанием темпов деления микроорганизмов и накопления биомассы.

3. Фаза логарифмического или экспоненциального роста явля-ется периодом наиболее интенсивного деления бактерий.

Бактерии делятся каждые 20-40 минут. Во время этой фазы бактерии осо-бенно ранимы, что объясняется высокой чувствительностью рас-тущих клеток к факторам окружающей среды. Продолжительность экспоненциального роста зависит от концентрации питательных ве-ществ в субстрате и в среднем составляет 5-6 часов.

4. Фаза замедления роста является переходным периодом от экспоненциального роста к фазе стационарного роста. Во время этой фазы наблюдается истощение питательных веществ субстрата и накопление в нем продуктов метаболизма, что снижает интенсив-ность размножения микроорганизмов.

Фаза стационарного роста вызывается постепенным исто-щением среды, накоплением в ней литических ферментов, хими-ческим ингибированием роста микробной клетки продуктами ме-таболизма. Эта фаза отличается от предыдущей повышенной со-противляемостью бактерий многим химическим и физическим фак-торам. К началу этой фазы количество жизнеспособных клеток достигает максимального уровня и остается на этом максимуме в течение нескольких часов в зависимости от вида микроорганизмов и особенностей их культивирования.

В конце этой фазы у некоторых микроорганизмов наблюдается процесс спорообразования.

6. Завершающая фаза процесса размножения — фаза старения и гибели — характеризуется отмиранием бактерий из-за истощения питательной среды и накопления в ней продуктов метаболизма. Наблюдается автолиз микроорганизмов как экстремальное прояв-ление нестабильности клетки после прекращения роста.

Продол-жительность этой фазы может составлять от нескольких часов до нескольких недель.

Дата публикования: 2015-11-01; Прочитано: 2316 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Размножение микроорганизмов - бинарное деление одноклеточных микроорганизмов (бактерий, риккетсий, простейших, дрожжей), в результате которого образуются две новые дочерние полноценные особи, наделенные генетической информацией материнской клетки. Дрожжеподобные грибы могут размножаться почкованием, спорами; плесневые грибы и актиномицеты размножаются обычно спорами.

Бактерии

Размножаются простым поперечным делением.

Бактерии являются гаплоидными клетками. В состав бактериальной клетки входит капсула, клеточная стенка, цитоплазматическая мембрана, цитоплазма, где располагаются мезосомы, рибосомы, нуклеоид, и включения. Некоторые бактериальные клетки имеют жгутики и образуют споры.

В отличие от животных клеток такие внутренние структуры бактериальной клетки, как мезосомы, рибосомы, нуклеоид, не имеют мембран, отграничивающих их от цитоплазмы.

По способу питания бактерий делят на автотрофов и гетеротрофов, по способу дыхания - на аэробов и анаэробов.

Актиномицеты

Размножаются спорами и поперечным делением (отшнуровыванием) гиф.

Занимают промежуточное положение между грибами и бактериями. Среди лучистых грибов сеть патогенные виды - возбудители актиномикозов. Многие актиномицеты являются продуцентами антибиотиков. (см.

Антибиотики). В «Определителе» Берджи актиномицеты названы стрептомицетами.

Дрожжи

Существует 2 вида размножения дрожжей - вегетативное (бесполое) и половое с образованием спор. У большинства видов дрожжей вегетативное размножение осуществляется почкованием, редко делением (Schizosaccharomyces). Аспорогенные. дрожжи размножаются только почкованием. Половое размножение происходит при неблагоприятных условиях, когда дрожжи перестают почковаться и превращаются в сумки (аски) со спорами - аскоспоры.

Половой процесс заключается в копуляции (слиянии) 2 вегетативных клеток путем сближения их и образования копуляционного канала, в котором происходит слияние частей плазмы и ядра клеток, называемое кариогамией, с образованием диплоидной зиготы, представляющей 2 клетки, соединенные копуляционным каналом.

Редукционное деление, или мейоз, сопровождаемое уменьшением числа хромосом вдвое, происходит сразу, без полового процесса, и зигота превращается в аск с 4 гаплоидными спорами, поэтому вегетативное поколение таких спор гаплоидно. Споры прорастают без копуляции. Так происходит размножение у дрожжей Zygosaccharomyces. У дрожжей Saccharomyces половой процесс происходит при слиянии спор или проросших из них клеток с образованием диплоидной зиготы, которая сразу начинает почковаться, образуя диплоидное потомство.

Мейоз происходит непосредственно перед образованием спор.

Плесневые грибы

У Грибов различают вегетативное, половое и бесполое размножение.

Вегетативное размножение может осуществляться при отделении от основной массы мицелия его частей, которые могут развиваться самостоятельно, а так же путем почкования мицелия или отдельных клеток у дрожжевых грибов.

Половое размножение состоит в слиянии половых клеток, в результате чего возникает зигота.

Бесполое размножение осуществляется при помощи специальных образований, называемых спорами. Споры могут развиваться внутри специальных споровместилищ или на концах особых выростов мицелия – конидиеносцах.

Основной способ размножения плесневых грибов – при помощи спор. Плесень размножается невероятно быстро.

В обыкновенной хлебной плесени можно различить маленькие чёрные точки — спорангии, в которых образуются споры. В одном спорангии содержится до 50.000 спор, каждая из которых способна воспроизвести сотни миллионов новых спор всего за несколько дней! А если условия благоприятные, плесень быстро появится на книге, обуви или на упавшем дереве в лесу.

Бактерии: Жизнедеятельность бактерий характеризуется ростом - фор-мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размноже-нием - самовоспроизведением, приводящим к увеличению ко-личества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования.

Актиномицеты, как и грибы, могут размножаться спорами. Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток Грамположительные бактерии делятся путем врастания синтези-рующихся перегородок деления внутрь клетки, синтезируют поперечную перегородку от периферии к центру при участии мезосом.

а грамотрицательные - путем перетяжки(на месте деления обнаруживается постепенно увеличивающееся искривление ЦПМ и клеточной стенки внутрь.), в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки. При почковании на одном из полюсов материнской клетки формируется и растёт почка, материнская клетка проявляет признаки старения и обычно не может дать более 4 дочерних.

У других бактерий кроме размножения наблюдается половой процесс, но в самой примитивной форме.

Половой процесс бактерий отличается от полового процесса эукариот тем, что у бактерий не образуются гаметы и не происходит слияния клеток. Однако главнейшее событие полового процесса, а именно обмен генетическим материалом, происходит и в этом случае. Это называется генетической рекомбинацией.

Делению клеток предшествует репликация бактериальной хро-мосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной ни-тью), приводящая к удвоению молекул ДНК бактериального ядра - нуклеоида. Репликация ДНК происходит в три этапа: инициация, элон-гация, или рост цепи, и терминация.

Размножение спирохет: поперечное деление-деление клетки у бактерий, при котором материнская клетка дает начало двум дочерним клеткам. Осуществляется в три стадии:

1) реплика-ция молекулы ДНК кольцевой хромосомы, присоединенной к мезосоме, которая так же делится на две части;

2) разведение с помощью мезосом двух дочерних кольцевых хромосом;

3) раз-деление цитоплазмы поперечной перегородкой, которая образу-ется от периферии к центру клетки.

Размножение грибов:

Большинство грибов способно к вегетативному, собственно бесполому и половому размножению.

Характерен плеоморфизм - наличие одновременно нескольких видов спороношений, например, бесполого и полового.

Вегетативное размножение

  • Частями мицелия.
  • Специализированными образованиями: артроспорами (оидиями) с тонкими стенками или хламидиоспорами с толстыми, образуются они, с некоторыми отличиями, при распаде мицелия на части, а затем дают начало новому.
  • Почкование гиф или отдельных клеток (например, у дрожжей).

Также почкуются аскоспоры у сумчатых и базидиоспоры у головнёвых. Образующиеся почки постепенно отделяются, растут и со временем сами начинают почковаться.

Бесполое размножение

Собственно бесполое размножение идёт посредством спор.

В зависимости от способа образования различают эндогенные и экзогенные споры.

  • Эндогенные споры (спорангиоспоры) характерны для низших грибов.

Образуются внутри особых клеток, называемыхспорангиями.

  • Экзогенные споры обычно называют конидиями,они имеются у высших и у некоторых низших грибов.

Образуются на вершинах или сбоку специальных гиф - конидиеносцев, ориентированных вертикально, которые могут быть простыми или разветвлёнными.

Покрыты плотной оболочкой, поэтому довольно устойчивы, но неподвижны. Могут подхватываться воздушными потоками или животными и переноситься на значительные расстояния. При прорастании дают ростовую трубку, а затем гифы.

Половое размножение

Конъюгация гамет

Для низших грибов свойственно слияние гаплоидных гамет путём изогамии, анизогамии (гетерогамии) или оогамии.

В случае оогамии развиваются половые органы - оогонии (женские) и антеридии (мужские). При оплодотворении происходит образование ооспоры - это зигота, которая покрывается толстой оболочкой, некоторое время проводит в состоянии покоя, после чего прорастает.

Скорость и фазы размножения бактерий в стационарных условиях.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры.

Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:

1. лаг-фаза;

2. фаза логарифмического роста;

3. фаза стационарного роста, или максимальной концентрации бактерий;

4. фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кри-вой размножения бактерий, отражающей зависимость логариф-ма числа живых клеток от времени их культивирования.
Лаг-фаза - период между по-севом бактерий и началом размножения.

Продолжительность лаг-фазы в среднем 4-5 ч. Бактерии при этом увеличиваются в раз-мерах и готовятся к делению; нарастает количество нуклеино-вых кислот, белка и других компонентов.
Фаза логарифмического (экспоненциального) роста является периодом ин-тенсивного деления бактерий. Продолжительность ее около 5- 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин.

Во время этой фазы бактерии наиболее ра-нимы, что объясняется высокой чувствительностью компонен-тов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.
Затем наступает фаза стационарного роста, при которой количество жиз-неспособных клеток остается без изменений, составляя макси-мальный уровень (М-концентрация). Ее продолжительность вы-ражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.

Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бак-терий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжи-тельность ее колеблется от 10 ч до нескольких недель. Интен-сивность роста и размножения бактерий зависит от многих фак-торов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Скорость роста бактерий зависит как от внешних условий, так и от физиологических особенностей самой клетки.

При наличии благоприятных условий рост бактериальной клетки завершается размножением. Основным способом размножения большинства бактерий является простое деление клетки пополам. Делению предшествует репликация (удвоение) хромосомы. Эти два процесса тесно взаимосвязаны. Частота репликации регулируется скоростью роста клетки. Репликация бактериальной хромосомы осуществляется описанным ранее способом (см. п. 3.2.5).

Изучение закономерности равномерного распределения генетического материала между дочерними клетками, образовавшимися в результате деления материнской клетки, позволило Г. Жакобу, С. Бреннеру и Т. Кузену (1963) сформулировать концепцию репликона. Репликон — единица репликации, это участок ДНК, содержащий регуляторные элементы, необходимые для независимой репликации. У бактерий таковым являются хромосома и плазмиды. Каждый репликон содержит не менее двух локусов, участвующих в контроле репликации: структурный ген-репликатор (ген-инициатор), детерминирующий синтез белка-инициатора и специальный сайт-репликатор, который распознает сигналы на начало удвоения хромосомы.

После некоторого периода роста клетка достигает определенного физиологического состояния. Из цитоплазматической мембраны в репликон поступают сигналы о необходимости репликации хромосомы и готовности клетки к делению. Под влиянием сигналов активизируется деятельность структурного гена и синтезируется белок-инициатор.

Он, воздействуя на репликатор, запускает репликацию.
Между системой репликации хромосомы и делением клетки существует координированное взаимодействие: делению клетки всегда предшествует удвоение хромосомы. После завершения репликации начинается процесс деления клетки. У грамположительных бактерий и цианобактерий это осуществляется образованием поперечной перегородки, разделяющей материнскую клетку на две равноценные дочерние.
Деление происходит следующим образом.

Вначале
синтезируется двуслойная цитоплазматическая мембрана. Затем на внутренней стороне клеточной стенки образуются два бугорка. Они интенсивно растут и, проникая кольцеобразно внутрь клетки между слоями образовавшейся цитоплазматической мембраны, образуют двойную перегородку, делящую клетку пополам.

Деление большинства грамотр тщательных бактерий
происходит путем перетяжки. При этом геномы расходятся по полюсам клетки, цитоплазматическая мембрана и клеточная стенка растягиваются, впячиваясь от периферии к центру клетки до контакта друг с другом. В результате клетка перешнуровывается на две дочерние. Деление клеток образованием перегородки или перетяжкой получило название бинарного в связи с формированием двух одинаковых дочерних клеток.

Кроме описанного бинарного деления, у бактерий известен другой способ размножения * почкование. Почкованием размножаются бактерии родов Hyphomicrobium, Pedomicrobium и других, объединенных в группу почкующихся бактерий.

Эти организмы имеют вид вытянутых палочек (0,5х 2 мкм), иногда грушевидных, оканчивающихся гифами, или простеками (выростами).
Размножение у этих бактерий начинается с образования почки на конце гифы или непосредственно на материнской клетке.

Почка разрастается в дочернюю клетку, формирует жгутик и отделяется от материнской клетки. По достижению зрелого состояния жгутик теряется и процесс развития повторяется.
В отличие от бинарного деления при почковании исходная клетка остается материнской, а вновь образованная — дочерней.

Между ними имеются морфологические и физиологические различия.
Актиномицеты размножаются фрагментами мицелия и спорами. У одних (род Micromonospora) единичные споры формируются на гифах вегетативного мицелия, у других (род Streptomyces и др.) цепочки спор образуются на концах гиф воздушного мицелия, так называемых конидиеносцах.

Фрагменты мицелия и споры в благоприятных условиях влажности, температуры прорастают и дают начало новым организмам.

Нитчатые цианобактерии кроме бинарного деления размножаются участками трихом и гормогониями. Последние представляют собой укороченные нити, состоящие из мелких вегетативных клеток одинаковой формы и размеров. При отмирании средних клеток трихома (нити) гормогонии выскальзывают из чехла материнского трихома, растут, делятся, образуя новые трихомы.

Гормогонии, в отличие от материнского трихома, не имеют гетероцист и никогда не окружены чехлом.
Независимо от того, каким путем идет процесс размножения бактерий, скорость этого процесса огромна: за 24 ч может смениться столько поколений, сколько у человека за пять тысяч лет.

Скорость размножения зависит от многих условий и для каждого вида бактерий различна. При наличии в среде необходимых питательных веществ, благоприятной температуры и кислотности среды деление каждой клетки может повторяться через 20-30 мин (Е. coli). При такой скорости размножения из одной клетки за сутки возможно образование 472 * 1019 клеток (273, 72 генерации).

Интенсивное размножение имеет для бактерий большое биологическое значение. Оно обеспечивает сохранение микроорганизмов на земной поверхности. При наступлении неблагоприятных условий они погибают массами, но достаточно сохраниться где-нибудь нескольким клеткам, как при подходящих условиях они дадут большое потомство клеток.
Численность популяции микроорганизмов в естественных местообитаниях, например, в почве или воде, постоянно меняется в соответствии с изменением условий существования.

Но в лабораторных условиях на питательных средах изменение численности популяции микроорганизмов происходит закономерным образом.

А так же в разделе «РАЗМНОЖЕНИЕ БАКТЕРИЙ»

Актиномицеты (Actinomyces) в переводе с латинского — лучистый гриб, обособленная группа микроорганизмов обладающая рядом морфологических признаков низшего вида гриба и не образующей спор бактерии.

Морфология актиномицетов

Строение актиномицитов имеет схожие черты с мицелиальными грибами, грифы мицелия имеют толщину в среднем 0.7 мк, изменяющуюся в пределах 0,5-1,2 мм, что на много меньше чем у грибов.

Для нитей, прямого или немного изогнутого вида, не имеющих поперечных перегородок, характерно моноподиальное или в отдельных случаях мутовчатое ветвление. Клеточная оболочка по составу имеет ряд черт грамположительных бактерий.

Размножение актиномицетов

Actinomyces размножаются с помощью субстрационного мицелия прорастающего в субстрате и воздушного мицелия вырастающего с плодоносцев-спорангиофоров.

Плодоносцы в зависимости от вида имеют различную форму завитков от закрученной формы, до прямой или волнистой.

Некоторые виды актиномицетов имеют спороносные ветки расположенные в виде мутовок или пучков, часто они моноподиально висят на нитях мицелия.

Образование спор происходит с помощью фрагментации или сегментации.

Фрагментация — это процесс дробления протопласта спороносной ветки на сто и более меленьких комков содержащих базофильное а также ядерное вещество.

Комки, превращаясь в споры, располагаются длинной цепочкой в спороносце.

Сегментация — это процесс разделения спороносца на сегменты с палочковидной формой, с помощью поперечных перегородок, они округляются и преобразовываются в споры.

Оболочки спор у разных видов имеют гладкую иногда бугристую, зубчатую, шиповидную, волосистую поверхность. Выросты на поверхности оболочек хорошо видны через электронный микроскоп.

В большинстве случаев актиномицеты аэрофилы и мезофилы, но получили распространение и термофилы, многие их виды способны образовывать пигменты разных цветов.

Актиномицеты, имея разнообразный набор ферментов способны синтезировать различные вещества и выделять их большими количествами в окружающую среду. Среди этих веществ, обладающих высокой физиологической активностью, встречаются многие витамины, некоторые аминокислоты, токсины, каротиноиды, фитогормоны и другие.

Также стоит упомянуть способность актиномицетитов образовывать разнообразные виды антибиотиков.

Общие положения

Определение 1

Размножение – процесс воспроизведения себе подобных организмов, ведущий к увеличению бактериальных клеток в популяции.

Для бактерий характерны следующие виды размножения:

  • бинарное деление на две части - деление происходит симметрично относительно поперечной и продольной оси, образуются одинаковые дочерние клетки
  • почкование - вариант бинарного деления, образующаяся на одном из полюсов почка растет до размеров материнской клетки и отделяется; симметрия присутствует только относительно продольной оси
  • множественное деление - клетка претерпевает ряд последовательных быстрых бинарных делений внутри фибриллярного слоя материнской клетки, что приводит к образованию баеоцитов – мелких клеток, количество которых колеблется от 4 до 1000, в результате разрыва клеточной стенки материнского организма баеоциты выходят наружу;
  • размножение спорами ;
  • путем фрагментации клеток , имеющих нитевидную форму;
  • конъюгация (половой процесс, обмен клетками генетическим материалом);
  • трансформация (перенос «голой» ДНК);
  • трансдукция (перенос генетической информации при помощи бактериофагов).

Репликация бактериальной хромосомной ДНК

Репликация хромосомы в бактериальной клетке происходит по полуконсервативному типу, что приводит к удвоению ДНК нуклеоида – бактериального ядра. При этом типе репликации двухспиральная молекула ДНК раскрывается, а каждая отдельная нить ДНК достраивается комплементарной нитью.

Процесс репликации ДНК происходит от начальной точки ori и катализируется ДНК-полимеразами. В области ori хромосома клетки бактерии связана с цитоплазматической мембраной. В первую очередь происходит деспирализация (раскручивание) двойной цепи ДНК. Образуется репликативная вилка, представленная двумя разветвленными цепями. Одна цепь, достраиваясь связывает нуклеотиды от 5 - к 3 -концу, а у второй достраивание происходит посегментно.

Репликация ДНК включает следующие этапы:

  • инициация;
  • элонгация (рост цепи);
  • терминация.

В результате репликации образуются две хромосомы, которые прикрепляются к цитоплазматической мембране или ее производным, и удаляются друг от друга мере увеличения клетки. После образования перегородки ил перетяжки деления происходит окончательное разъединение хромосом. Перегородки деления разрушают аутолитические ферменты.

Размножение бактерий в жидкой питательной среде

Замечание 1

Если бактерии засеяны в определенный объем питательной среды, то размножаясь и потребляя питательные вещества, они ведут к истощению этой среды, что, в свою очередь, приводит к прекращению роста микроорганизмов.

Культивирование микроорганизмов в такой системе является периодическим культивированием, а культуру бактерий называют непрерывной культурой.

Рост культуры на жидкой питательной среде может быть:

  • придонным:
  • диффузным;
  • поверхностным.

Рост периодической культуры можно разделить на несколько фаз. Эти фазы можно показать в виде отрезков кривой размножения микроорганизмов (рисунок 1).

  • Лаг-фаза. Период между посевом бактерий и началом процесса размножения. Длится $4-5$часов.Микроорганизмы увеличиваются в объеме и готовятся к делению. Увеличивается количество белка, нуклеиновых кислот и других соединений.
  • Фаза логарифмического роста . Период интенсивного деления клеток. Продолжительность $5-6$ часов. Клетки бактерий наиболее чувствительны.
  • Фаза стационарного роста (максимальной концентрации бактерий). Количество жизнеспособный клеток постоянно, наблюдается М-концентрация (максимальная концентрация). Продолжительность фазы зависит от вида и особенностей бактерий, культивирования.
  • Фаза гибели бактерий . В условиях истощения питательной среды, а также накопления продуктов метаболизма происходит отмирание бактерий.

Продолжительность от $10$ часов до нескольких недель.

Размножение бактерий на плотной питательной среде

При росте на плотных питательных средах бактерии формируют изолированные колонии с ровными или неровными краями округлой формы, разного цвета и консистенции. Цвет питательной среды зависит от пигмента бактерии. Среди микроорганизмов наиболее распространенными пигментами являются каротины, меланины, ксантофиллы. Многие пигменты обладают антибиотикоподобным, антимикробным действием.

Замечание 2

Форма, цвет, вид колоний на плотных питательных средах учитываются при идентификации микроорганизмов, отборе колоний для создания чистых культур.

Бактерии самая древняя форма жизни на земле. Появились на планете около 3,8-3,6 миллионов лет назад. Агрессивные климатические условия сделали их выносливыми и стойкими к выживанию. Древнейшим существом будут цианобактерии.

Именно они поспособствовали накоплению в атмосфере кислорода. Наш организм состоит из многочисленных их видов. Различают полезные и вредные типы. Обитают везде: в воде, в воздухе, в человеке и животных существах, в слоях почвы.

Объем колоний зависит не только от строения, но и от того как происходит деление бактерий. Строение примитивное. Аппарат представляется слизистой капсулой или мембраной. Микроорганизм состоит из всего-то одной живой клетки.

В цитоплазме нет митохондрий и пластид. У большинства микробов есть жгутики и усики, с помощью них они и передвигаются по крови, сосудам и тканям. Являются прокариотами, то есть в них нет ядра.

Это значит, что микрочастицы ДНК скапливаются в определенной части цитоплазмы. Имеют название нуклеотиды. Нуклеотиды своеобразный род ядра, в нем то и содержится информация. ДНК хранит сведения в сжатом виде. При ее разворачивании длина достигает 1 мм.

Размножение бактерий происходит путем деления.

Следует знать, что бактерии размножаются только при наличии благоприятных факторов, каких рассмотрим ниже.

Для их роста нужны:

  1. свет;
  2. температура;
  3. наличие кислорода;
  4. влажность;
  5. фактор щелочности и кислотности;

У медиков интерес вызывает температурные условия. Для того, чтобы клетки делились требуется определенная температура. Некоторые классы при очень низкой впадают в состояние анабиоза или спячки, другие же только при высокой не могут продолжить свой рост и разрушаются.

Если одних можно убить кипячением воды, другие прекрасно себя чувствуют, также и с замораживанием. Среди этого предела есть средние условия при которых может осуществляться максимальное развитие с высокой скоростью. Нужная температурная фаза от 23 до 30 градусов, для течения патогенной флоры требуется 38 градусов.

В этой среде плодятся бактериальные простейшие. В идеальных условия прокариоты способны производить 34 триллиона потомков за сутки. Состояние взросления происходит где-то за 20 минут. К счастью живут они не долго, несколько минут или часов.

Что нужно для некоторых микроорганизмов?


Стафилококковая группа нуждается в аргинине и лецитине. Стрептококки в фосфолипидах. Шигеллам, корине бактериям нужна подпитка никотиновая кислота. Золотистый стафилококк, пневмококк, бруцеллез не сможет без витамина Б1, а вот прототрофы сами синтезируют необходимое.

Пути созревания


Как говорилось ранее развитие простейших осуществляется путем деления.

Оно бывает:

  • простым;
  • почкованием;
  • конъюгацией, половым путем;

Простой путь

При первом методе бактерии могут плодиться равновеликим поперечным делением. Материнские клетки после удваивания нитей ДНК и органелл образуют две части, а именно дочерние клетки. Генетический код сформирован аналогично материнскому.

Они как бы клонируют сами себя. В течение суток из одной клеточки выходит 70 поколений. Если предположить, что все они могли жить, масса составила более 5 тонн. Конечно такое невозможно в природе.

Вегетативный этап

Или проще почкование обозначается тем, что существа выращивают на одном из полюсов вторую почку, то есть себя. При ответвлении наступает разрыв нитей ДНК. Именно гетероцисты участвуют в процессе. К такому методу прибегают цианобактерии и колониальные породы.

Таким образом прокариоты могут вырастить до 4 почек, после чего наступает старение и гибель. Кокковые колонии отделяясь свободно идут в рост.

Спорообразование


Есть раздвоение спорами.

Каким образом происходит?

Бациллы репродуцируют себя таким образом при наступлении неблагоприятных условий внешней и внутренней среды. Внутри споры делается особа среда, приостанавливается механизм жизни, уменьшается уровень воды. Если бацилла попала в такое состояние ей не страшен холод, жара, излучения разной этиологии, химические средства.

Как только улучшаются факторы выходят молодые прокариоты. Цикл становится очень длительным. Науке даже известны случаи когда ученые находили простейших, которым десятки, а то и сотни лет.

Половой путь


Конъюгация происходит у бактерий живущих преимущественно в человеческом организме, либо теле животного. Здесь две формы соприкасаются друг с другом и начинается обмен данными. Называется генетическая рекомбинация, образование новых видов.

Половым способом размножаются бактерии кишечной палочки и остальные грамположительные и грамотрицательные типы. Если отсутствует истинное направление то такой обмен между ними является полезным и мочь поспособствовать развитию устойчивости к антибиотикам и другим лекарственным препаратам.

Инциститация


Еще один путь защиты от агрессивных обстоятельств преобразование в цист. Цисты обозначают пузырьки в толстой оболочке. Находится в таком положении бациллы могут очень долго. Даже 200 градусов по Цельсию не уничтожит их. Далее при положительных причинах они выходят наружу делясь бинарно.

Так, что приемы приумножения возбудителей подчиняются внешней среде. Недостаток воды, большое содержание кислорода в воздухе, лишение высокопитательных микроэлементов. Низкие или высокие перепады температур заставляют прибегнуть к спорообразованию, инцистированию.

Степень бактериальной популяции


Живя в благоприятных условиях клетки находятся на исходной стадии, начальной. Средняя продолжительность 1-2 часа. Задержание роста, занимает примерно пару часов. При логарифмическом периоде бациллы могут размножаться в быстром порядке, пик достигается через 6 часов.

Отрицательное ускорение, когда истощаются питательные запасы микроэлементов и веществ. Стационарная ступень, погибшие особи заменяются новыми уже через два часа. Этап ускоренной гибели, бациллы гибнут через каждые 3 часа. Логарифмический фазис, отмечается постоянная смерть, составляет 6 часов.

Снижение скорости смерти, на этом моменте оставшиеся живые клеточки переходят в состояние покоя.

Многоклеточная стадия


Одноклеточная фаза способна делать все функции организма, на это не влияют соседствующие рядом микроорганизмы. Одноклеточные образовывают клеточные агрегаты, они скрепляются слизью.

Часто появляется скопление бацилл в одну ветвь. Так микобактерии развивают цисты, получается своеобразный обмен. Явление служит пред посылом к многоклеточному формированию. К ним относятся цианобактерии, актиномицеты.

Каким требованиям должны отвечать особи:

  1. агрегированностью клеток;
  2. разделением свойств между ними;
  3. установка должного контакта между особями;

У нитчатых особей структура описана в клеточной стенке, создает взаимосвязь между индивидуумами. Обмен у бактерий происходит веществами и энергией. Некоторые нитчатые помимо вегетативных особей содержат дифференциальные гетероцисты или акинеты.

Локализация

В зависимости от разбивки бациллы имеют определенные виды скоплений:

  • шаровидные;
  • спиралевидные;

Первые обнаруживаются в паре или по одному, это диплококки, микрококки, стафилококки. Могут выглядеть как веточки винограда, цепочки. Спиралевидные, разбросаны в хаотичном порядке, к ним причисляются лептоспирозы, вибрио.

Под процессом размножения обычно понимают развитие новых организмов из половых клеток. Но микроорганизмы не отвлекаются на подобные мелочи. Бактерии размножаются путем простого деления (большинство из них). Причем делают они это неимоверно быстро.

Некоторые виды при благоприятных условиях за шесть часов увеличивают свою популяцию в 250 000 раз (четверть миллиона!). То, что условия размножения многих видов бактерий находятся в довольно узком диапазоне, не может не радовать. Кроме того, микроорганизмы, безостановочно размножаясь, просто не находят себе пищи и банально гибнут от голода. Иначе нам с вами не нашлось бы места на этом маленьком голубом шарике.

Но ограниченные условия размножения не останавливают микроорганизмы. При неблагоприятных условиях бактерии отращивают вокруг себя своеобразную плотную оболочку. Образовавшиеся в результате споры отлично переносят и сильный мороз, и температуру выше 100⁰С, и полное отсутствие воды. Например, споры сибирской язвы могут на 30-50 лет затаиться в вечной мерзлоте или невероятной сухости и жаре пустыни, а затем, как ни в чем не бывало, снова выйти на смертельную охоту. Не добавляет оптимизма и тот факт, что и бактерии, и их споры могут переноситься ветром, водой, другими организмами в любую точку планеты.

Процесс размножения может быть половым (с участием двух родительских организмов) или бесполым. К бесполым способам размножения относятся:

  1. Прямое или бинарное деление (амитоз). Из одной клетки образуются две или несколько новых, совершенно идентичных исходной. Этот путь оптимален для бактерий.
  2. Митоз. Основной путь деления клеток организма, содержащих ядро, но не относящихся к половым. Митоз – важнейший инструмент для роста и восстановления тканей и органов.
  3. Образование спор. Бактерии образуют споры (капсулы), способные выдерживать крайне неблагоприятные условия и переноситься на значительные расстояния. Строго говоря, образование спор нельзя назвать способом размножения, т. к. количество клеток при этом не увеличивается, скорее это способ сохранения и переноса.
  4. Вегетативное размножение подразумевает отделение от основного организма части клеток. Из небольшого фрагмента затем развивается взрослая особь. Вегетативно размножаются губки, кишечнополостные и некоторые растения.
  5. Почкование. В этом случае из материнской клетки «выпячивается» небольшой фрагмент, который затем отделяется от основного организма. При почковании дочерняя клетка намного меньше по размерам, чем материнская, поэтому для последующего размножения потребуется время на рост и формирование необходимых структур клетки. Почкование – один из видов вегетативного размножения.
  6. Фрагментация. Есть уникальные существа, способные вырастить полноценный организм из отдельной части тела. Например, плоские, кольчатые черви или иглокожие, будучи разделены на несколько фрагментов, не погибают, а образуют несколько новых организмов.

Эволюция процесса размножения двигалась от бесполой формы к половой. При бесполом размножении в процесс вовлечены все клетки, при половом, соответственно, только половые. Каждый из путей имеет свои преимущества. Для бесполого размножения характерен высокий темп и частая смена поколений. При половом пути упор делается на выживаемость потомства, а темпы прироста значительно уменьшаются.

Наследственность бактерий

Бактерии – одноклеточные безъядерные организмы (прокариоты). Просто так взять и разделиться на две половинки живой организм, тем более состоящий из одной клетки, не может. Нужна соответствующая подготовительная работа. Перед удвоением микроорганизма путем деления происходит:

  • увеличение цитоплазмы (внутренняя полужидкая среда клетки);
  • удвоение хромосомы, в случае с прокариотами (клетками без ядер) удваивается замкнутая в кольцо макромолекула ДНК (нуклеоид);

То есть каждая дочерняя клетка получает точную копию материнской ДНК.

Но для микроорганизмов это не единственный способ обмена и передачи генетического материала. Информация может предаваться даже между неделящимися клетками. Это происходит без слияния клеток или увеличения их количества. Такой процесс можно только условно называть половым размножением, так как передается часть генома, в отличие от полного набора генной информации, получаемой потомком от родителей.

  1. Бактериальная ДНК может попадать в клетку тремя способами:
  2. Из окружающей среды бактерия захватывает отдельно существующую молекулу ДНК, оставшуюся от разрушения других микроорганизмов. Такой процесс называется трансформацией. Очень удобно использовать трансформацию в исследовательских целях, «подбрасывая» микробам нужный ученым набор генов.
  3. Существуют особые структуры, неспособные жить вне клетки – вирусы. Те из них, кто своим «домом» выбирает бактерии, называются бактериофагами. Процесс переноса ДНК между клетками с помощью бактериофагов называется трансдукцией.

Третий вариант напоминает оплодотворение и называется конъюгацией. Микроорганизмы соединяются между собой временными «трубочками», и ДНК из одной клетки переходит в другую.

Новая бактериальная ДНК содержит информацию от двух «родителей». Это означает, что измененная клетка будет иметь ряд признаков, присущих только ей и отличных от родительских. Кстати, без изменения клеточной информации не был бы возможен процесс эволюции.

Немного химии и геометрии

Бактерии разделяются на грамположительные и грамотрицательные. Это условное разделение по реакции микроорганизмов на анилиновые красители предложил датский врач Грам. Одни клетки сохраняют окраску даже после промывки спиртосодержащей жидкостью, с других краска легко смывается. Этот метод облегчает обнаружение и идентификацию микроорганизмов при исследовании под микроскопом.

Такое поведение клеток обусловлено, в том числе, различиями в структуре клеточной стенки. Оболочка грамотрицательных бактерий тоньше, чем у грамположительных. В процессе деления грамположительные и грамотрицательные бактерии ведут себя по-разному:

  1. Грамотрицательные делятся путем создания перетяжки. Клетка в конечной точке деления становится похожей на гантель.
  2. Грамположительные отращивают поперечную перегородку от оболочки к центру клетки.

Клетки, имеющие форму цилиндра, делятся поперек длинной стороны. Шаровидные бактерии образуют перегородки в любых направлениях. Деление идет обязательно симметрично, то есть исходная клетка образует две (как минимум) совершенно одинаковые дочерние клетки. Если условия благоприятствуют, бактерии не отрываются друг от друга, а создают определенные структуры:

  • при разделении в одной плоскости образуются цепочки последовательно соединенных клеток;
  • если плоскостей деления было несколько, конечный результат может выглядеть цепочкой, гроздью, пакетом бактерий.

При каких условиях размножаются бактерии

Закономерный ответ на этот вопрос – при благоприятных. Но дело в том, что для разных видов бактерий условия размножения сильно различаются:

  • одним видам необходим кислород, другим нет, третьим нужен определенный процент кислорода в воздухе, четвертые приспосабливаются к существующим условиям;
  • оптимальная температура колеблется от 0-10⁰С для одних, 20-40⁰С для других, 50-60⁰С для третьих, четвертые переживут даже кипячение;
  • наличие воды, пожалуй, одно из немногих условий, общих для всех организмов, в том числе и для бактерий;
  • наличие пищи по вкусу: кому-то нужна солнечная энергия, кому-то – органические вещества, некоторым необходимы определенные химические элементы.

Одним из основных условий является кислотность среды. Именно от значения рН зависит возможность бактерий получать питательные вещества из окружающей среды. По кислотности среды подразделяются на:

  • кислые (рН 0 – 6);
  • нейтральные (рН выше 6 – ниже 8);
  • щелочные (рН 8 – 14).

Подавляющее большинство микроорганизмов предпочитают рН 7 (приблизительно). Слишком кислая или щелочная среда губительна для бактерий. Некоторые бактерии, например, молочнокислые, в процессе жизнедеятельности изменяют кислотность среды до таких состояний, что не только перестают размножаться, но и начинают гибнуть. Кстати, именно нелюбовь бактерий к кислой среде дает нам возможность делать заготовки на зиму – квашеная капуста или грибочки, все маринады и соленья.

Не так важно знать, каким путем размножаются бактерии (бинарным делением, почкованием или вегетативно). Гораздо важнее не допускать их неконтролируемый рост. Особое внимание уделяется патогенным (болезнетворным) бактериям, которые с помощью спор могут спокойно дождаться возникновения благоприятных условий и снова причинить вред.

Для предотвращения заболеваний следует помнить, что бактерии боятся ультрафиолета, сухости, нагревания, антибиотиков и здорового иммунитета. Это значит, что все те правила, которым учили нас с пеленок (мойте руки перед едой, не контактируйте с больными, закаляйтесь, ешьте здоровую пищу), имеют под собой строгую научную базу. И если с мамой, бабушкой или учителем еще можно было поспорить, то с сухими научными выкладками спорить глупо и опасно для жизни.

Всё живое и неживое обязано подчиняться законам физики — в том числе второму началу термодинамики, гласящему, что энтропия изолированной системы не может уменьшаться. На первый взгляд, высокоорганизованные многоклеточные организмы существуют вопреки этому закону «неубывания беспорядка», но на самом деле тепло, выделяемое ими, увеличивает энтропию вселенной, и второй закон термодинамики не нарушается. Тем не менее в этой области остается множество вопросов. Сколько тепла должна выделять клетка во внешнее пространство, чтобы компенсировать свою внутреннюю упорядоченность с точки зрения термодинамики? Как близко подходят клетки к пределу, установленному вторым законом термодинамики?

Джереми Ингланд (Jeremy England), физик из MIT, смоделировал процесс размножения кишечной палочки (E.coli). Приняв в расчет устройство бактериальной клетки, особенности воспроизводства и скорость роста, ученый рассчитал минимальное количество тепла, которое E. coli должна выделять в окружающее пространство, чтобы не нарушать второй закон термодинамики. Фактическое значение теплоотдачи оказалось примерно того же порядка, что и теоретическое: бактерия «обогревала» окружающую среду всего в шесть раз сильнее, чем ей велит термодинамика. Для биологической системы это довольно высокая эффективность.

Ингланд использовал метод статистический механики (расчет вероятности различных вариантов взаимного расположения атомов и молекул), чтобы смоделировать 20-минутный процесс размножения E. coli, в ходе которого бактерия потребляет много пищи, преобразует её в энергию, перестраивает и упорядочивает свои молекулы (в том числе белки и ДНК), а в конечном итоге делится на две клетки.

Чтобы исследовать термодинамику этого процесса, Ингланд решил смоделировать обратную ситуацию, когда две клетки сливаются в одну. Это событие настолько маловероятно, что в природе, скорее всего, так никогда и не случится. Численно эту вероятность можно оценить, рассчитав вероятности обращения вспять всех химических реакций, необходимых для деления бактериальной клетки. Наиболее распространенная из таких реакций — образование пептидных связей. Вероятность того, что эта реакция самопроизвольно пойдет в обратном направлении, настолько мала, что в некоторой абстрактной «вечной» клетке это событие будет происходить лишь раз в 600 лет. А спонтанного разрыва всех 1,6 млрд пептидных связей, присутствующих в бактериальной клетке, пришлось бы ждать намного дольше. Рассчитав энергию, необходимую для разрушения этих связей, и время, за которое этот процесс мог бы пройти самопроизвольно, Ингланд теоретические параметры и обратного процесса — деления клетки с образованием полного набора пептидных связей.

Оказалось, что расчетная величина составляет чуть больше одной шестой от того количества теплоты, которое бактерия выделяет в окружающее пространство в единицу времени. Теоретически бактерии могли бы размножаться и быстрее, но Ингланд считает, что они вряд ли будут эволюционировать, увеличивая эффективность воспроизводства, — у бактерий есть множество других «внутриклеточных задач». А вот для специалистов в области синтетической биологии расчеты Ингланда могут оказаться весьма интересными: они демонстрируют возможность создания микроорганизмов, которые делятся быстрее своих немодифицированных собратьев.

Ингланд считает, что его работа также косвенно указывает на причины, по которым именно ДНК, а не РНК эволюционировала в качестве носителя генетической информации: связи в ДНК более прочные и менее подвержены спонтанному разрушению. С другой стороны, «термодинамический барьер» для организмов, полагающихся на РНК, ниже. Они могут размножаться быстрее, эволюционируя и используя все имеющиеся ресурсы.

Вверх