Скорость течения крови в артериях. Скорость циркуляции крови

Артерии, капилляры и вены представляют систему сообщающихся сосудов, по которым непрерывно течет кровь. Сердце в этой системе является насосом, перекачивающим кровь из вен в артерии. При нормальной циркуляции крови у здорового человека приток крови к сердцу равен оттоку. В этих условиях через любое общее сечение кровеносной системы (артерии, капилляры, вены) должно проходить одинаковое количество крови. Однако скорость течения крови в артериях, капиллярах и венах различна. Наиболее быстро движется кровь в аорте, здесь скорость течения ее 0,5 м/с, а наиболее медленно - в капиллярах - 0,5 мм/с. В венах скорость течения увеличивается и в крупных венах составляет 0,25 м/с. Такое большое различие в скорости течения крови в аорте, капиллярах и венах обусловлено неодинаковой шириной общего сечения кровяного русла в его различных участках. Самым узким участком кровяного русла является аорта. Суммарный просвет капилляров в 600 - 800 раз превышает просвет аорты. Этим объясняется замедление тока крови в капиллярах. В венозной части кровеносной системы общий просвет сосудов по мере приближения к сердцу уменьшается. Поскольку каждая артерия сопровождается двумя венами, ширина просвета вен в 2 раза больше, чем артерий. Этим объясняется тот факт, что скорость течения крови в венах в 2 раза меньше, чем в артериях.

Кровяное давление

Непременным условием движения крови по системе кровеносных сосудов является разность давления крови в артериях и венах, которая создается и поддерживается сердцем. При каждой систоле сердца в артерии нагнетается определенный объем крови. Благодаря большому сопротивлению в артериолах и капиллярах до следующей систолы только часть крови успевает перейти в вены и давление в артериях не падает до нуля. Очевидно, уровень давления в артериях должен определяться величиной систолического объема сердца и показателем сопротивления в периферических сосудах: чем с большей силой сокращается сердце и чем больше сужены артериолы и капилляры, тем выше кровяное давление. Кроме этих двух факторов: работы сердца и периферического сопротивления, на величину кровяного давления влияют объем циркулирующей крови и ее вязкость.

Как известно, сильное кровотечение, а именно потеря до 1 / з крови, ведет к смерти от невозврата крови к сердцу. В состоянии покоя не вся кровь циркулирует, часть ее находится в кровяных депо: селезенке, печени, коже. Во время физической работы происходит выход крови из депо и объем циркулирующей крови увеличивается. При этом повышается кровяное давление и усиливается кровообращение в мышцах.

Вязкость крови возрастает при изнурительном поносе или сильном потоотделении. При этом увеличивается периферическое сопротивление и для продвижения крови необходимо более высокое давление. Работа сердца усиливается, кровяное давление растет.

В нормальных условиях кровеносная система не только наполнена, но даже переполнена кровью. Стенки артерий растянуты и находятся в состоянии эластического напряжения. Когда во время систолы сердце выбрасываем кровь в артерии, то только часть энергии сердца тратится на продвижение крови, значительная часть переходит в энергию эластического напряжения стенок артерий. Во время диастолы растянутые эластические стенки аорты и крупных артерий оказывают давление на кровь и поэтому течение крови не прекращается.

В артериальной системе в связи с ритмической работой сердца кровяное давление периодически колеблется: повышается во время систолы желудочков и снижается во время диастолы, по мере оттекания крови на периферию. Наивысшее давление, наблюдающееся во время систолы, называют максимальным, или систолическим, давлением. Наименьшее давление во время диастолы называют минимальным, или. диастолическим. Величина давления зависит от возраста. У детей стенки артерий отличаются большей эластичностью, поэтому давление у них ниже, чем у взрослых. У здоровых взрослых людей максимальное давление в норме 110 - 120 мм рт. ст., а минимальное 70 - 80 мм рт. ст. К старости, когда эластичность сосудистых стенок вследствие склеротических изменений уменьшается, уровень кровяного давления повышается.

Разность между максимальным и минимальным давлением называют пульсовым давлением. Оно равно 40 - 50 мм рт. ст. Величина кровяного давления служит важной характеристикой деятельности сердечно-сосудистой системы.

Давление в артериолах, капиллярах и венах. По мере продвижения крови по кровяному руслу давление снижается. Энергия, создаваемая сердцем, расходуется на преодоление сопротивления току крови, возникающего в силу трения частиц крови о стенку сосуда и друг о друга. Различные отделы кровяного русла оказывают неодинаковое сопротивление току крови, поэтому снижение давления происходит неравномерно. Чем больше сопротивление данного участка, тем более резко в нем падает уровень давления. Участками с наибольшим сопротивлением являются артериолы и капилляры: 85% энергии сердца расходуется на продвижение крови по артериолам и капиллярам и только 15% - на продвижение ее по крупным и средним артериям и венам.

Давление в аорте и крупных сосудах равно 110 - 120 мм рт. ст., в артериолах - 60 - 70, в начале капилляра, в его артериальном конце,- 30, а в венозном конце - 15 мм рт. ст. В венах давление снижается постепенно. В венах конечностей оно составлет 5 - 8 мм рт. ст., а в крупных венах вблизи сердца может быть даже отрицательным, т. е. на несколько миллиметров ртутного столба ниже атмосферного.

Измерение кровяного давления. Величину артериального давления можно измерить двумя методами - прямым и непрямым. При измерении прямым, или кровавым, способом в центральный конец артерии ввязывают стеклянную канюлю или вводят полую иглу, которую резиновой трубочкой соединяют с измерительным прибором, например ртутным манометром.

Прямым способом давление у человека регистрируют во время больших операций, например на сердце, когда необходимо непрерывно следить за уровнем давления.

Для определения давления непрямым, или косвенным, методом находят то внешнее давление, которое достаточно, чтобы пережать артерию. В медицинской практике обычно измеряют артериальное давление в плечевой артерии непрямым звуковым методом Короткова при помощи ртутного сфигмоманометра Рива-Роччи или пружинного тонометра. На плечо накладывают полую резиновую манжетку, которая соединена с нагнетательной резиновой грушей и манометром, показывающим давление в манжетке. При нагнетании воздуха в манжетку она давит на ткани плеча и сжимает плечевую артерию, а манометр показывает величину этого давления. Сосудистые тоны выслушивают фонендоскопом над локтевой артерией, ниже манжетки.

Н. С. Коротков установил, что в несдавленной артерии звуки при движении крови отсутствуют. Если поднять давление выше уровня систолического, то манжетка полностью пережмет просвет артерии и кровоток в ней прекратится. Звуки при этом также отсутствуют. Если теперь постепенно выпускать воздух из манжетки и снижать в ней давление, то в момент, когда оно станет чуть ниже систолического, кровь при систоле с большой силой прорвется через сдавленный участок и ниже манжетки в локтевой артерии будет слышен сосудистый тон. То давление в манжетке, при котором появляются первые сосудистые тоны, соответствует максимальному, или систолическому, давлению. При дальнейшем выпускании воздуха из манжетки, т. е. снижении в ней давления, тоны усиливаются, а затем или резко ослабляются, или исчезают. Этот момент соответствует диастолическому давлению.

Пульс

Пульсом называют ритмические колебания диаметра артериальных сосудов, возникающие при работе сердца. В момент изгнания крови из сердца давление в аорте повышается и волна повышенного давления распространяется вдоль артерий до капилляров. Легко прощупать пульсацию артерий, которые лежат на кости (лучевая, поверхностная височная, тыльная артерия стопы и др.). Чаще всего исследуют пульс на лучевой артерии. Прощупывая и подсчитывая пульс, можно определить частоту сердечных сокращений, их силу, а также степень эластичности сосудов. Опытный врач, надавливая на артерию до полного прекращения пульсации, может довольно точно определить высоту кровяного давления. У здорового человека пульс ритмичен, т. е. удары следуют через равные промежутки времени. При заболеваниях сердца могут наблюдаться нарушения ритма - аритмия.

В крупных венах вблизи сердца также можно наблюдать пульсацию. Происхождение венного пульса диаметрально противоположно возникновению артериального пульса. Отток крови из вен в сердце прекращается во время систолы предсердий и во время систолы желудочков. Эти периодические задержки оттока крови вызывают переполнение вен, растяжение их тонких стенок и обусловливает их пульсацию. Венный пульс исследуют в надключичной ямке.

Капилляры

Капилляры - это тот отдел кровеносной системы, где кровь осуществляет свои основные функции: отдает тканям кислород, питательные вещества, гормоны и уносит от них углекислый газ и другие продукты обмена, подлежащие выделению.

Обмен веществами между кровью капилляров и межтканевой жидкостью поддерживает постоянство физико-химических свойств тканевой жидкости, омывающей клетки, и, следовательно, постоянство условий для их жизнедеятельности.

Капилляры являются настолько мелкими сосудами, что их можно видеть только под микроскопом. Средняя длина их 0,3 - 0,7 мм, диаметр около 8 мкм, толщина стенки всего 1 мкм. На 1 мм 2 мышечной ткани, т. е. на площадь, равную по величине булавочной головке, приходится около 2000 капилляров. В сердце - органе, совершающем огромную механическую работу, число капилляров на 1 мм 2 достигает 4000. Не все капилляры постоянно открыты. При спокойном состоянии организма функционирует примерно 1 / 10 их - "дежурные капилляры".

Благодаря тому что кровь в капиллярах находится под давлением, в артериальной части капилляров вода и растворенные в ней вещества фильтруются в межтканевую жидкость. В венозном его конце, где давление крови уменьшается, осмотическое давление белков плазмы засасывает межтканевую жидкость обратно в капилляры. Таким образом, ток воды и веществ, растворенных в ней, в начальной части капилляра идет наружу, а в конечной его части - внутрь. Кроме процессов фильтрации и осмоса, в обмене участвует и процесс диффузии, т. е. движение молекул от среды с высокой концентрацией в среду, где концентрация ниже. Глюкоза, аминокислоты диффундируют из крови в ткани, а аммиак, мочевина - в обратном направлении. Однако стенка капилляра живая полупроницаемая мембрана. Движение частиц через нее нельзя объяснить только процессами фильтрации, осмоса, диффузии.

Проницаемость стенки капилляра различна в разных органах и избирательна, т. е. через стенку проходят одни вещества и задерживаются другие. Общая поверхность всех капилляров тела составляет 6300 м 2 . Медленный ток крови (0,5 мм/с) способствует протеканию в них процессов обмена.

Тайная мудрость человеческого организма Александр Соломонович Залманов

Скорость циркуляции крови

Скорость циркуляции крови

Поверхность развернутой крови (плазма+кровяные тельца) равна 6000 м 2 . Поверхность лимфы равна 2000 м 2 . Эти 8000 м 2 введены в кровеносные и лимфатические сосуды - артерии, вены и капилляры, длина последних 100 000 км. Поверхность в 8000 м толщиной в 1-2 мкм, длиной более 100 000 км ирригируется кровью и лимфой за 23-27 с. Эта быстрота капиллярного потока объясняет, быть может, таинственную быстроту химических реакций в организме человека с его очень умеренной температурой. По-видимому, роль скорости капиллярного потока является такой же значимой, как роль диастаз, энзимов и биокатализаторов.

Карель (Carrel, 1927), сопоставляя объем жидкостей, необходимых для жизни ткани в культуре, подсчитал потребность в жидкости человеческого организма за 24 ч и нашел, что она равняется цифре в 200 л. Он пришел в полное недоумение, когда был вынужден констатировать, что с 5-6 л крови и 2 л лимфы организм наделен идеальной ирригацией.

Его расчет был ошибочным. Выживание ткани, выращенной в культуре, отнюдь не является зеркалом, точным отражением настоящей жизни ткани в живом организме. Это карикатура клеточной и тканевой жизни в нормальных условиях.

Ткани, выращенные в культуре, имеют микроскопический, лилипутный метаболизм по сравнению с метаболизмом нормальных тканей. Недостает стимуляторов и контроля мозгового центра. Невозможно путем смеси соли и воды, биологически инертных, заменить живую кровь и лимфу, которые очищают, которые каждую секунду дозируют питательные субстанции, отходы каждой молекулы, пропорции между кислотами и основаниями, между кислородом и углекислотой.

Почти все заключения, сделанные на основе изучения тканей, выращенных в культуре, должны быть в корне пересмотрены. Если цикл васкулярной циркуляции происходит за 23 с, если за 23 с 7-8 л крови и лимфы обегают свои орбиты, то это составит приблизительно 20 л/мин, 1200 л/ч, 28 000 л/сут. Если наши подсчеты скорости кровеносного потока являются правильными, если за 24 ч почти 30 000 л крови и лимфы омывают наше тело, мы можем допустить, что присутствуем при бомбардировке паренхиматозных клеток частичками крови, согласно тому же закону, который определяет бомбардировку нашей планеты космическими частицами, закону, управляющему движением планет и Вселенной, движением электронов на их орбите, а также вращением Земли.

Скорость потока крови очень различна при прохождении территорий, расположенных в мозгу, в некоторых участках она проходит в срок, не превышающий 3 с. Это означает, что в мозгу скорость циркуляции крови соответствует быстроте молниеносной вспышки мысли.

Часто говорят о резервных силах организма человека, но при этом не отдают себе отчет в истинной природе этих сил. Каждый атом, каждое ядро атома, сохраняя свою огромную взрывную силу, остается инертным, безвредным, если не последует головокружительное ускорение, производящее разрушительный взрыв. Резервные силы организма представляют собой ту же взрывную потенцию, так же дремлющую, как и усыпленное могущество инертного атома.

Рациональные бальнеотерапевтические процедуры, увеличивая и ускоряя циркуляцию, интенсифицируя количество и полноту окислительных процессов, вызывают увеличение и распространение конструктивных микровзрывов.

«Все, что существует наверху, существует и внизу», - заявил Гераклит более 2000 лет тому назад. Параллелизм между направленными микровзрывами, запланированными в жизни животных, растений и людей, с одной стороны, и между гигантскими взрывами в мириадах солнц - с другой, очевиден.

Из книги Странности нашего тела. Занимательная анатомия автора Стивен Джуан

Какова скорость чихания? Это вопрос Кена Муни из Нортгейта, Квинсленд.При чихании от вас разлетаются мельчайшие капли воды на расстояние 1,8 метра со скоростью примерно 160 километров в

Из книги Методичка по первой помощи автора Николай Берг

4. ПЕРВАЯ ПОМОЩЬ ПРИ ОСТАНОВКЕ ДЫХАНИЯ И НАРУШЕНИЕ ЦИРКУЛЯЦИИ КРОВИ ИСКУССТВЕННАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ Если в ходе первоначальной оценки пострадавшего установлено, что он находится без сознания и не дышит, необходимо приступить к искусственной вентиляции

Из книги О чем говорят анализы. Секреты медицинских показателей – для пациентов автора Евгений Александрович Гринь

1.1.3. Скорость Вот и пришло время рассказать о, пожалуй, самом известном из показателей – скорости оседания эритроцитов. Скорость любят многие, но в случае скорости оседания эритроцитов лучше, чтобы она была минимальной и укладывалась у мужчин в пределы 1-10 мм/ч, у женщин –

Из книги Точка боли. Уникальный массаж пусковых точек боли автора Анатолий Болеславович Ситель

Из книги Неизлечимых болезней нет. 30-дневная программа по интенсивной очистке и детоксикации автора Ричард Шульце

Глава 7. Программа циркуляции и движения A. МассажМассируйте все тело каждый день, особое внимание уделяя глубокой рефлексологии стоп и всем проблемным областям. Не бойтесь прикасаться к своим воспаленным или больным частям. Вложите в них опять жизнь. Глубокий,

Из книги Сон - тайны и парадоксы автора Александр Моисеевич Вейн

Из книги Новейшая книга фактов. Том 1 автора

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Анатолий Павлович Кондрашов

Из книги Учимся понимать свои анализы автора Елена В. Погосян

Скорость оседания эритроцитов (СОЭ) По всей видимости, СОЭ, или скорость оседания эритроцитов, может считаться показателем, лучше всего известным широкой публике. Точно так же, как тот факт, что повышение СОЭ является неблагоприятным признаком.Скорость оседания

Из книги Тренинги и игры для мышц глаз. Уникальные упражнения для восстановления зрения по методу профессора Олега Панкова автора Олег Панков

Система циркуляции внутриглазной жидкости Цилиарное тело представляет собой кольцевую структуру, которая присоединена одним концом к радужке, другим – к сетчатке. От него по направлению к хрусталику отходит около 70 миниатюрных, длиной до 22 мм каждый, ресничных

автора Ольга Калашникова

Капилляры, их роль в циркуляции крови и обмене веществ в организме Термин «капилляр» имеет латинское происхождение и переводится как «волосовидный». Эти мельчайшие (в 15 раз тоньше человеческого волоса) кровеносные сосуды пронизывают весь организм, составляя

Из книги Чистые сосуды по Залманову и еще чище автора Ольга Калашникова

Припарки и компрессы для нормализации циркуляции крови Припаркой называют густую горячую смесь для наружного применения, механизм действия которой заключается в улучшении капиллярного кровообращения и обезболивании. Область использования припарок – хронические

Из книги Я – пищевой наркоман: эффективные методы похудения автора Софья Ефросинина

Базовая скорость метаболизма Существует такое понятие, как базовая скорость метаболизма - то есть скорость, с которой и происходят все эти процессы в организме человека в состоянии покоя.Базовая скорость метаболизма зависит от потребностей организма. То есть

Из книги Всё о позвоночнике для тех, кому за… автора Анатолий Ситель

Как разомкнуть патологический круг циркуляции боли Болезни мышечной сферы врачи разных медицинских специальностей называют миалгией, миозитом, мышечным ревматизмом, миофасцитом, миофасцикулитом, миопериартритом, миофасциальными болями, нейромиозитом и др. А способы

Из книги Упражнения цигун для начинающих автора Валерий Николаевич Хорев

Разновидности циркуляции Всего выделено три типа функционирования «малой орбиты». Это: «путь Воды», «путь Огня» и «путь Ветра». Названия даны по именам стихий, поэтому пишутся с большой буквы:Путь Воды, при котором Ци поднимается внутри позвоночника и попадает прямо в

Из книги Следующие 50 лет. Как обмануть старость автора Крис Кроули

Скорость восстановления Могу рассказать о других цифрах, которые имеют для вас значение. Полезно вычислить скорость восстановления сердечного ритма: это число, показывающее, на сколько падает частота сокращений через шестьдесят секунд после перехода от максимального

ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ

Движение крови в капиллярах. Микроциркуляция

Капилляры представляют собой тончайшие сосуды, диамет­ром 5-7 мкм, длиной 0,5-1,1 мм. Эти сосуды пролегают в меж­клеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма. Суммарная длина всех капилляров тела чело­века составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору. Физиологическое значение капилляров состоит в том, что через их стенки осущест­вляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.

Скорость кровотока в капиллярах невелика и составляет 0,5- 1 мм/с. Таким образом, каждая частица крови находится в капил­ляре примерно 1 с. Небольшая толщина слоя крови (7-8 мкм) и тесный контакт его с клетками органов и тканей, а также непре­рывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.

В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капил­лярная сеть значительно более густая, чем в белом.

Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры). Другие представляют собой боковые ответвления от первых: они отходят от артериального конца маги­стральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других фе­номенах микроциркуляции.

Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. У человека давление на артериальном конце капилляра равно 32 мм рт.ст., а на венозном - 15 мм рт.ст., на вершине петли капилляра ногтевого ложа - 24 мм рт.ст. В капиллярах почечных клубочков давление достигает 65- 70 мм рт.ст., а в капиллярах, оплетающих почечные канальцы, - всего 14-18 мм рт.ст. Очень невелико давление в капиллярах лег­ких - в среднем 6 мм рт.ст. Измерение капиллярного давления про­изводят в положении тела, при котором капилляры исследуемой обла­сти находятся на одном уровне с сердцем. В случае расширения артериол давление в капиллярах повышается, а при сужении понижается.

Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает.

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ - гормонов и ме­таболитов - осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы. При этом об­щий кровоток через метартериолы и капилляры определяется сокра­щением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладких мышечных клеток, располо­женных у устья капилляра при его отхождении от метаартериол) оп­ределяет, какая часть крови пройдет через истинные капилляры.

В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул - артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы откры­ваются, то часть крови может поступать в вены, минуя капилляры.

Артериовенозные анастомозы играют роль шунтов, регулирую­щих капиллярное кровообращение. Примером этого является изме­нение капиллярного кровообращения в коже при повышении (свыше 35°С) или понижении (ниже 15°С) температуры окружающей среды. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в про­цессах терморегуляции.

Структурной и функциональной единицей кровотока в мелких со­судах является сосудистый модуль - относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. При этом имеет место специфичность васкуляризации тканей различных органов, что проявляется в особенностях ветвления микрососудов, плотности капилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.

Микроциркуляция - собирательное понятие. Оно объеди­няет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.

Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000-9000 л крови. Через стенку капилляров профиль­тровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Законо­мерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Стерлингом. Гидроста­тическое давление крови в капиллярах (Ргк) является основной силой, направленной на перемещение жидкости из капилляров в ткани. Основной силой, удерживающей жидкость в капиллярном русле, является онкотическое давление плазмы в капилляре (Рок). Определенную роль играют также гидростатическое давление (Ргт) и онкотическое давление тканевой жидкости (Рот)

На артериальном конце капилляра Ргк составляет 30-35 мм рт.ст., а на венозном - 15-20 мм рт.ст. Рок на всем протяжении остается относительно постоянным и составляет 25 мм рт.ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации - выхода жидкости, а на венозном - обратный про­цесс - реабсорбция жидкости. Определенные коррективы вносит в этот процесс Рот, равное примерно 4,5 мм рт.ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная вели­чина Ргт (-3-9 мм рт.ст.).

Следовательно, объем жидкости, переходящей через стенку капил­ляра за одну минуту (V), при коэффициенте фильтрации К равен:

V=(Ргк + Рот + Ргт - Рок)*К.

На артериальном конце капилляра V положителен, здесь про­исходит фильтрация жидкости в ткань, а на венозном - V отри­цателен и жидкость реабсорбируется в кровь. Транспорт электро­литов и низкомолекулярных веществ, например глюкозы, осущест­вляется вместе с водой.

Капилляры различных органов отличаются по своей ультраструк­туре, а следовательно, по способности пропускать в тканевую жид­кость белки. Так, 1 л лимфы в печени содержит 60 г белка, в миокарде - 30 г, в мышцах - 20 г и в коже - 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.

Механизмы транспорта газов в тканях описаны в главе 8.

КАПИЛЛЯРНОЕ КРОВООБРАЩЕНИЕ - движение крови в системе микроциркуляции, центральной частью к-рой являются капилляры. К. к. осуществляет основную функцию микроциркуляторной системы - транскапиллярный обмен, т. е. обмен веществ между кровью и тканями. Общее число капилляров (см.) в большом круге кровообращения составляет несколько миллиардов. По данным А. Крога (1927), в 1 мм 3 скелетной мышцы человека находится ок. 2000 капилляров, собаки - 2630, лошади - 1350. По расчетам 1 мл крови, находящейся в капиллярах скелетных мышц, имеет поверхность соприкосновения с эндотелием капилляров, достигающую 0,5 м 2 . Такая большая поверхность соприкосновения крови со стенками капилляров благоприятствует происходящему в них обмену веществ, в частности газообмену между кровью и тканями.

Хотя плотность капиллярной сети необыкновенно велика, число перфузируемых капилляров широка варьирует в зависимости от функц, состояния ткани или органа. Морфол. анализ капиллярного русла у различных животных показал, что структура капилляра является устойчивой и малоизменяющейся. Стенка капилляра не содержит гладкомышечных клеток, что указывает на невозможность активного сокращения. Прижизненные исследования и результаты электронно-микроскопического анализа позволяют прийти к выводу, что эндотелиальные клетки капилляров, не обладая специфической сократительной функцией, в определенных условиях способны сокращаться. Весьма вероятен также пассивный механизм изменения просвета капилляра, обусловленный разностью гидростатического давления внутри капилляра и окружающей ткани.

Наряду с капиллярами, выполняющими обменную функцию (их иногда называют нутритивными капил ля-рами), Г. И. Мчедлишвили (1958), Цвейфах (В. Zweifach, 1961), В. В. Куприянов с соавт. (1975) описывают еще и так наз. магистральные капилляры. Морфологически магистральные капилляры идентичны обычным, однако имеют большой диаметр. Скорость кровотока в таких капиллярах в 2-3 раза выше скорости кровотока в обычных капиллярах. Функционально, по мнению В. В. Куприянова с соавт. (1975), магистральные капилляры выполняют роль полушунтов, обеспечивая переход артериальной крови в венозные сосуды.

Функция капилляров заключается в обеспечении транскапиллярного обмена, т. е. в снабжении клеток органов и тканей питательными и пластическими веществами и удалении продуктов метаболизма. Для реализации этой функции необходимо соблюдение ряда условий, важнейшим из которых являются определенные величины гидростатического и онкотического давления в капилляре (см. Капиллярное давление), скорости кровотока в капилляре, проницаемости стенки капилляра, определенное число перфузируемых капилляров на единицу объема ткани.

Общее число капилляров в различных тканях неодинаково. В тканях с высоким уровнем обмена число капилляров на 1 мм2 поперечного сечения больше, чем в тканях с менее интенсивным обменом. Напр., в сердечной мышце число капилляров на 1 мм2 сечения в 2 раза больше, чем в скелетной мышце; в сером веществе головного мозга капиллярная сеть значительно гуще, чем в белом веществе.

Обмен веществ через капиллярную стенку осуществляется путем фильтрации, диффузии, а также микровезикулярного транспорта. Фильтрация происходит за счет гидростатического капиллярного давления. Этот процесс обеспечивает водно-солевой гомеостаз тканей и специализированные формы транспорта при образовании лимфы, экссудата и др. Коэффициент капиллярной фильтрации выражают количеством жидкости (в мкл), к-рая фильтруется через определенную площадь стенки сосуда (в мкм 2) в единицу времени (сек.) при определенном давлении крови (в см вод. ст.). Диффузия (см.) обеспечивает перенос пластических и питательных веществ, а также устранение продуктов метаболизма. При этом капиллярную проницаемость можно определить по первому закону Фика:

Dn/dt = +pS*Δc ,

где -dn/dt - скорость диффузии, pS - произведение капиллярной проницаемости р-ра (p) на эффективную поверхность (S) эндотелия капилляра, Δc - разность концентраций по обе стороны капиллярной стенки.

Помимо пассивной диффузии в капиллярах наблюдается продвижение веществ против градиента концентрации - путем так наз. активного переноса молекул (см. Транспорт ионов). Полагают, что в мембранах клеток имеются особые вещества - пермеазы, или ионофоры (см.), которые путем образования комплекса с тем или иным веществом обеспечивают его поступление в клетку.

Электронно-микроскопические исследования показали, что в трансэндотелиальном переносе веществ принимают участие микровезикулы (так наз. микровезикулярный транспорт). Микровезикулы, образующиеся на одной поверхности, перемещаются к противоположной, где соединяются с клеточной оболочкой и освобождаются от содержимого в субэндотелиальное пространство. При электронно-микроскопическом изучении путей выхода макромолекул и микрочастиц из кровотока был прослежен процесс «загрузки» микровезикул при их формировании на одной клеточной поверхности, перемещение везикул к противоположной поверхности и освобождение содержимого в подэндотелиальное пространство. Объемная скорость везикулярного транспорта достигает 6-10 везикул/мкм 2 эндотелия в секунду.

Важнейшим показателем функционирования микроциркуляторного русла является скорость кровотока в капиллярах. Прижизненные исследования показали, что у животных средняя скорость движения эритроцитов в капиллярах составляет 0,5-1 мм/сек, а в капиллярах кожи человека - 0,74 мм/сек. В эксперименте показано, что в легочных капиллярах кошки скорость может достигать 2 мм/сек. Через альвеолярный капилляр длиной 248 мкм эритроцит проходит за 0,12 сек.; этот промежуток и определяет продолжительность контакта эритроцита с альвеолярным воздухом. Скорость кровотока в капиллярах определяется градиентом давления в прекапиллярах и посткапиллярах. Градиент в свою очередь зависит от величины общего артериального и венозного давления и периферического сопротивления.

Поток эритроцитов, проходящих через капилляр, широко варьирует и в зависимости от функционального состояния органа может колебаться от 300 до 1500 эритроцитов в минуту.

Величина транскапиллярного обмена зависит, в частности, от числа перфузируемых капилляров, т. е. таких, в которых движутся эритроциты. Капилляры, не содержащие в данный момент эритроцитов и заполненные плазмой, получили название плазматических. В условиях функц, покоя органа число перфузируемых капилляров составляет 30- 50% от общего числа капилляров. При усиленной работе органа плазматические капилляры заполняются эритроцитами. Термины «перфузируемые» и «закрытые» капилляры весьма условны, так же как и термины «неперфузируемые» и «открытые» капилляры. Так, напр., капилляр, по к-рому не движутся эритроциты, не является неперфузируемым в строгом смысле, ибо по нему может перемещаться плазма. Закрытые капилляры, т. е. сосуды, просвет которых почти полностью перекрыт спавшимися стенками, встречаются только в паренхиматозных органах (легкие, селезенка, печень) в связи с эластичностью их стромы. В тканях с более жесткой стромой, как показали прижизненные наблюдения, закрытых капилляров нет.

В условиях патологии при появлении агрегатов из склеившихся эритроцитов, закупоривающих отдельные капилляры, возрастает число плазматических капилляров и микрососудов. Процесс агрегации эритроцитов (см.) обратим, и при восстановлении гемодинамических параметров агрегаты «разбиваются» (дезагрегация) до отдельных эритроцитов.

Существует мнение, что число перфузируемых капилляров определяется работой прекапиллярного сфинктера. Однако эта точка зрения не разделяется многими исследователями. Прекапиллярный сфинктер образован двумя гладкомышечными клетками в месте отхождения прекапилляра от метартериолы (прекапиллярной артериолы). Основные сведения о прекапиллярном сфинктере были получены при изучении микрососудов ретролингвальной мембраны лягушки. Была показана моторная иннервация прекапиллярного сфинктера, независимость его функции от сокращения метартериолы и высокая чувствительность к вазоактивным веществам, механическим воздействиям и продуктам тканевого метаболизма. Предполагают, что гладкомышечные клетки прекапиллярного сфинктера имеют определенный тонус, обусловливающий состояние относительной констрикции. При усиленной работе органа накапливающиеся продукты метаболизма снижают тонус гладкомышечных клеток, вызывают дилатации). Возникающее при этом усиление капиллярного кровотока (увеличение числа активных капилляров) обеспечивает удаление избытка метаболитов, что приводит к восстановлению тонуса мышечных клеток и уменьшению кровотока. При длительной констрикции прекапиллярного сфинктера в эксперименте отме-ча ли усиление адсорбции (поступление жидкости из ткани в капилляры), тогда как преобладание длительной дилатации усиливало фильтрацию (выход жидкости из капилляров). Вопрос о функции прекапиллярного сфинктера у млекопитающих остается открытым, однако некоторые авторы в работе прекапиллярного сфинктера видят единственный механизм регуляции К. к. Число перфузируемых капилляров определяется соотношением артериального и венозного давления на уровне прекапиллярного сфинктера. Апериодическая прерывистость кровотока в капиллярах может быть обусловлена закупориванием устья прекапилляра лейкоцитом, который с трудом преодолевает узкое устье прекапилляра. После прохождения лейкоцита кровоток в капиллярах восстанавливается.

Т. о., регуляция К. к. осуществляется в основном с помощью гуморальных механизмов. Одновременно следует учитывать, что микроциркуляторное русло органов и тканей вовлечено в общую систему гемоциркуляции. Следовательно, при наличии выраженной автономности капиллярного кровотока последний в значительной степени обусловлен центральной гемодинамикой, что особенно четко проявляется при резком снижении АД. Нервная регуляция функции капилляров (в частности, их проницаемости) осуществляется опосредованно - с помощью вазоактивных веществ, выделяемых, напр., тучными клетками, под действием нейромедиаторов (см. Нейрогуморальная регуляция).

Согласно представлениям А. Л. Чижевского (1959), эритроцит в капилляре занимает такое положение, при к-ром его боковые поверхности расположены вдоль оси сосуда. При этом вращение эритроцита прекращается, но происходит его деформация. Прижизненная микроскопия позволила наблюдать деформацию эритроцита, движущегося в капилляре и принимающего форму капли, груши, колокольчика, подковы, цилиндра и т. п. Такие формы эритроцит принимает в посткапиллярах, диаметр которых значительно превышает его диаметр. В капиллярах, диаметр которых близок к диаметру эритроцитов, последние своей широкой поверхностью расположены поперек потока и движутся почти вплотную один за другим, выполняя тем самым функцию своеобразных поршней (поршневой механизм прохождения эритроцитов). Скорость движения таких эритроцитов по прекапиллярам значительно выше, чем у деформирующихся. Движение эритроцитов в капилляре вплотную друг за другом обеспечивает гидродинамическую стабилизацию положения эритроцита, а также исключает возможность его вращения. Такое положение эритроцита наиболее выгодно для процесса диффузии кислорода.

Реологические свойства крови также влияют на К. к. Текучесть крови зависит от степени ее вязкости. Выявлена прямая зависимость между величиной гематокрита (т. е. объема эритроцитов в процентах) и вязкостью крови, однако даже при гематокрите 98% кровь сохраняет текучесть. При величине гематокрита 20% вязкость крови в 10 раз ниже, чем при гематокрите 90%. В капиллярах величина гематокрита (Нс) может быть рассчитана по формуле:

где N - число эритроцитов в капилляре, VR - средний объем эритроцита, D - средний диаметр капилляра, a L - его длина. Поскольку в капиллярах гематокрит сравнительно постоянен, то в капиллярах с внутренним диам. 5 мкм и меньше вязкость крови уже практически не зависит от гематокрита.

Одной из наиболее частых форм патологии в системе микроциркуляции является внутрисосудистая агрегация эритроцитов и других форменных элементов крови. Появление в крови большого количества агрегатов различной формы и величины уменьшает суммарную поверхность эритроцитов, создает условия для механической закупорки микро-сосудов и капилляров, в которых прекращается кровоток. Развивающаяся гипоксия тканей, в т. ч. сосудистой стенки, вызывает увеличение ее адгезивных свойств, что приводит к прилипанию лейкоцитов, уменьшающих просвет микрососуда и затрудняющих кровоток. Чем сильнее выражена агрегация эритроцитов, тем резче снижена суспензионная стабильность крови, что приводит к отделению плазмы от эритроцитов и возникновению плазматических капилляров, не содержащих эритроцитов. Существенным фактором в механизме агрегации эритроцитов является первичное снижение скорости кровотока.

Вторичное уменьшение кровотока при ожогах, жировой эмболии, токсическом гемотрансфузионном и кардиогенном шоке, тромбозах, олигурии, операциях на сердце и сосудах, острой артериальной недостаточности, гипотермии, экстракорпоральном кровообращении, при инфекциях и травмах обусловливается самой агрегацией эритроцитов. Агрегация эритроцитов зависит также от соотношения концентраций высоко- и низкомолекулярных белков плазмы крови. При увеличении концентрации высокомолекулярных белков (фибриноген) создаются реальные предпосылки для агрегации эритроцитов. Агрегация эритроцитов является вторичным процессом, отражающим реакцию системы крови на повреждение.

При многих патол, процессах (травма, воспаление, отек) главным звеном патогенеза является повышение проницаемости стенки капилляра (см. Проницаемость).

Прохождение лейкоцитов и эритроцитов (диапедез) через капиллярную стенку является основным компонентом патогенеза воспаления (см.). Методом электронной микроскопии была детально изучена динамика диапедеза (см.). Лейкоциты проникают в основном через межэндотелиальные соединения. Нейтрофил пропускает тонкий псевдоподий в место соединения эндотелиальных клеток, а затем, как бы переливаясь в проникшую часть псевдоподия, проходит через стенку капилляра без разрушения последней. Диапедез лимфоцитов следует после прохода лейкоцитов, которые, по-видимому, каким-то образом воздействуют на эндотелиальную клетку и облегчают переход лимфоцитов. Лимфоциты проходят через эндотелиальную клетку путем образования большой вакуоли, постепенно продвигающейся от просвета сосуда к периваскулярному пространству. Диапедез эритроцитов, вероятно, осуществляется пассивно, за счет давления крови на фоне возрастающей проницаемости стенок капилляров, которые становятся проходимыми и для фибриногена, превращающегося во внесосудистом пространстве в фибрин.

Изменение проницаемости капилляров может быть обусловлено не только внутрисосудистым фактором (замедление кровотока, тромбоцитопения, гипопротеинемия, плазменные кинины, действие токсинов и др.), но и внесосудистыми факторами, среди которых существенную роль играет система тучных клеток (см.). Тучные клетки, являясь обязательным компонентом соединительной ткани, содержат высокоактивные вещества (гистамин, серотонин, гепарин, норадреналин, гиалуронидазу, протеолитические ферменты, мукополисахариды и др.). Разнообразные физ., хим., флотогенные и антигенные раздражители, гипоксия и многие другие факторы вызывают дегрануляцию тучных клеток, т. е. их разрушение. При дегрануляции клеток гранулы попадают в окружающее пространство, где их содержимое может воздействовать на стенку капилляра, изменяя ее проницаемость, а также адгезивные свойства эндотелия.

Библиография: Куприянов В. В., Караганов Я. И. и Козлов В. И. Микроциркуляторное русло, М., 1975; Мчедлишвили Г. И. Капиллярное кровообращение, Тбилиси, 1958, библиогр.; Нестеров А. И. К учению о кровеносных капиллярах и капилляроскопии как методе их изучения в нормальных и патологических условиях, Томск, 1929, библиогр.; Чернух А. М., Александров П. Н. и Алексеев О. В. Микроциркуляция, М., 1975, библиогр.; Чижевский А. Л. Структурный анализ движущейся крови, М., 1959, библиогр.; Шошенко К. А. Кровеносные капилляры, Новосибирск, 1975, библиогр.; К г о g h A. Anatomie und Physiologie der Capillaren, B. u. a., 1970, Bibliogr.

А. М. Чернух, П. H. Александров.

Вверх