Как научиться преобразовывать формулы по физике. Как выразить одну переменную через другую? Как выразить переменную из формулы? Союз с математикой

Физика – наука о природе. Она описывает процессы и явления окружающего мира на макроскопическом ярусе – ярусе маленьких тел, сравнимых с размерами самого человека. Для изложения процессов физика использует математический агрегат.

Инструкция

1. Откуда берутся физические формулы ? Упрощенно схему приобретения формул дозволено представить так: ставится вопрос, выдвигаются догадки, проводится серия экспериментов. Итоги обрабатываются, появляются определенные формулы , и это дает предисловие новой физической теории либо продолжает и развивает теснее имеющуюся.

2. Человеку, постигающему физику, не нужно снова проходить каждый данный непростой путь. Довольно освоить центральные представления и определения, ознакомиться со схемой эксперимента, обучиться выводить основополагающие формулы . Безусловно, без крепких математических познаний не обойтись.

3. Выходит, выучите определения физических величин, относящихся к рассматриваемой теме. У всякой величины есть свой физический толк, тот, что вы обязаны понимать. Скажем, 1 кулон – это заряд, проходящий через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

4. Уясните физику рассматриваемого процесса. Какими параметрами он описывается, и как эти параметры меняются на протяжении времени? Зная основные определения и понимая физику процесса, легко получить простейшие формулы . Как водится, между величинами либо квадратами величин устанавливаются прямо пропорциональные либо обратно пропорциональные зависимости, вводится показатель пропорциональности.

5. Путем математических реформирований дозволено из первичных формул вывести вторичные. Если вы обучитесь делать это легко и стремительно, последние дозволено будет не запоминать. Стержневой способ реформирований – способ подстановки: какая-нибудь величина выражается из одной формулы и подставляется в иную. Главно лишь, дабы эти формулы соответствовали одному и тому же процессу либо явлению.

6. Также уравнения дозволено складывать между собой, разделять, перемножать. Функции по времени дюже зачастую интегрируют либо дифференцируют, получая новые зависимости. Логарифмирование подойдет для степенных функций. При итоге формулы опирайтесь на итог, тот, что вы хотите в результате получить.

Каждая человеческая жизнь окружена большинством разновидных явлений. Ученые-физики занимаются постижением этих явлений; их инструментарием выступают математические формулы и достижения предшественников.

Природные явления

Изучение природы помогает умней относиться к имеющимся источникам, открывать новые источники энергии. Так, геотермальные источники обогревают примерно всю Гренландию. Само слово «физика» восходит к греческому корню «физис», что обозначает «природа». Таким образом, сама физика – наука о природе и природных явлениях.

Вперед, в грядущее!

Часто физики в прямом смысле «опережают время», открывая законы, которые находят использование лишь десятками лет (и даже столетиями) позднее. Никола Тесла открывал законы электромагнетизма, которые находят использование в наши дни. Пьер и Мария Кюри открыли радий фактически без поддержки, в невероятных для современного ученого условиях. Их открытия помогли спасти десятки тысяч жизней. Теперь физики каждого мира сосредоточены на вопросах Вселенной (макрокосмос) и мельчайших частиц вещества (нанотехнологии, микрокосмос).

Понимание мира

Важнейшим мотором общества является любознательность. Вот отчего эксперименты в Большом Андронном Коллайдере имеют такую высокую важность и спонсируются союзом из 60 государств. Имеется настоящая вероятность раскрыть тайны общества.Физика – наука фундаментальная. Это значит, что всякие открытия физики дозволено применять в иных сферах науки и техники. Небольшие открытия в одной ветви могут поразительно повлиять на всю «соседнюю» ветвь целиком. В физике знаменита практика изыскания группами ученых из различных стран, принята политика помощи и сотрудничества.Тайна мироздания, материи волновала великого физика Альберта Эйнштейна. Он предложил теорию относительности, поясняющую, что поля гравитации искривляют пространство и время. Апогеем теории стала известная формула E = m * C * C, объединяющая энергию с массой.

Союз с математикой

Физика опирается на новейшие математические инструменты. Нередко математики открывают абстрактные формулы, выводя новые уравнения из существующих, применяя больше высокие ярусы абстракции и законы логики, делая храбрые догадки. Физики следят за становлением математики, и изредка научные открытия абстрактной науки помогают пояснять незнакомые дотоле природные явления.Бывает и напротив – физические открытия толкают математиков на создание догадок и нового логичного агрегата. Связь физики и математики – одной из важнейших научных дисциплин подкрепляет авторитет физики.

Воспользовавшись записью первого начала термодинамики в дифференциальной форме (9.2), получим выражение для теплоёмкости произвольного процесса:

Представим полный дифференциал внутренней энергии через частные производные по параметрам и :

После чего формулу (9.6) перепишем в виде

Соотношение (9.7) имеет самостоятельное значение, поскольку определяет теплоёмкость в любом термодинамическом процессе и для любой макроскопической системы, если известны калорическое и термическое уравнения состояния.

Рассмотрим процесс при постоянном давлении и получим общее соотношение между и .

Исходя из полученной формулы, можно легко найти связь между теплоемкостями и в идеальном газе. Этим мы и займемся. Впрочем, ответ уже известен, мы его активно использовали в 7.5.

Уравнение Роберта Майера

Выразим частные производные в правой части уравнения (9.8), с помощью термического и калорического уравнений, записанных для одного моля идеального газа. Внутренняя энергия идеального газа зависит только от температуры и не зависит от объёма газа, следовательно

Из термического уравнения легко получить

Подставим (9.9) и (9.10) в (9.8), тогда

Окончательно запишем

Вы, надеюсь, узнали (9.11). Да, конечно, это уравнение Майера. Еще раз напомним, что уравнение Майера справедливо только для идеального газа.

9.3. Политропические процессы в идеальном газе

Как отмечалось выше первое начало термодинамики можно использовать для вывода уравнений процессов, происходящих в газе. Большое практическое применение находит класс процессов, называемых политропическими. Политропическим называется процесс, проходящий при постоянной теплоемкости .

Уравнение процесса задается функциональной связью двух макроскопических параметров, описывающих систему. На соответствующей координатной плоскости уравнение процесса наглядно представляется в виде графика - кривой процесса. Кривая, изображающая политропический процесс, называется политропой. Уравнение политропического процесса для любого вещества может быть получено на основе первого начала термодинамики с использованием его термического и калорического уравнений состояния. Продемонстрируем, как это делается на примере вывода уравнения процесса для идеального газа.

Вывод уравнения политропического процесса в идеальном газе

Требование постоянства теплоёмкости в процессе позволяет записать первое начало термодинамики в виде

Используя уравнение Майера (9.11) и уравнение состояния идеального газа, получаем следующее выражение для


Разделив уравнение (9.12) на T и подставив в него (9.13) придем к выражению

Разделив () на , находим

Интегрированием (9.15), получаем

Это уравнение политропы в переменных

Исключая из уравнения () , с помощью равенства получаем уравнение политропы в переменных

Параметр называется показателем политропы, который может принимать согласно () самые разные значения, положительные и отрицательные, целые и дробные. За формулой () скрывается множество процессов. Известные вам изобарный, изохорный и изотермический процессы являются частными случаями политропического.

К этому классу процессов относится также адиабатный или адиабатический процесс . Адиабатным называется процесс, проходящий без теплообмена (). Реализовать такой процесс можно двумя способами. Первый способ предполагает наличие у системы теплоизолирующей оболочки, способной изменять свой объем. Второй – заключается в осуществлении столь быстрого процесса, при котором система не успевает обмениваться количеством теплоты с окружающей средой. Процесс распространения звука в газе можно считать адиабатным благодаря его большой скорости.

Из определения теплоемкости следует, что в адиабатическом процессе . Согласно

где – показатель адиабаты.

В этом случае уравнение политропы принимает вид

Уравнение адиабатного процесса (9.20) называют также уравнением Пуассона, поэтому параметр часто именуют постоянной Пуассона. Постоянная является важной характеристикой газов. Из опыта следует, что ее значения для разных газов лежат в интервале 1,30 ÷ 1,67, поэтому на диаграмме процессов адиабата «падает» более круто, чем изотерма.

Графики политропических процессов для различных значений представлены на рис. 9.1.

На рис. 9.1 графики процессов пронумерованы в соответствии с табл. 9.1.

Этот урок – полезное дополнение к предыдущей теме " ".

Умение делать такие вещи – штука не просто полезная, она – необходимая . Во всех разделах математики, от школьной до высшей. Да и в физике тоже. Именно по этой причине задания подобного рода обязательно присутствуют и в ЕГЭ и в ОГЭ. Во всех уровнях – как базовом, так и профильном.

Собственно, вся теоретическая часть подобных заданий представляет собой одну единственную фразу. Универсальную и простую до безобразия.

Удивляемся, но запоминаем:

Любое равенство с буквами, любая формула – это ТОЖЕ УРАВНЕНИЕ!

А где уравнение, там автоматически и . Вот и применяем их в удобном нам порядке и – готово дело.) Читали предыдущий урок? Нет? Однако… Тогда эта ссылочка – для вас.

Ах, вы в курсе? Отлично! Тогда применяем теоретические знания на практике.

Начнём с простого.

Как выразить одну переменную через другую?

Такая задача постоянно возникает при решении систем уравнений. Например, имеется равенство:

3 x - 2 y = 5

Здесь две переменные – икс и игрек.

Допустим, нас просят выразить x через y .

Что означает это задание? Оно означает, что мы должны получить некоторое равенство, где слева стоит чистый икс. В гордом одиночестве, безо всяких соседей и коэффициентов. А справа – что уж получится.

И как же нам получить такое равенство? Очень просто! С помощью всё тех же старых добрых тождественных преобразований! Вот и применяем их в удобном нам порядке, шаг за шагом добираясь до чистого икса.

Анализируем левую часть уравнения:

3 x – 2 y = 5

Здесь нам мешаются тройка перед иксом и -2 y . Начнём с -, это попроще будет.

Перекидываем - из левой части в правую. Меняя минус на плюс, разумеется. Т.е. применяем первое тождественное преобразование:

3 x = 5 + 2 y

Полдела сделано. Осталась тройка перед иксом. Как от неё избавиться? Разделить обе части на эту самую тройку! Т.е. задействовать второе тождественное преобразование.

Вот и делим:

Вот и всё. Мы выразили икс через игрек . Слева – чистый икс, а справа – что уж получилось в результате "очищения" икса.

Можно было бы сначала поделить обе части на тройку, а затем – переносить. Но это привело бы к появлению дробей в процессе преобразований, что не очень удобно. А так, дробь появилась лишь в самом конце.

Напоминаю, что порядок преобразований никакой роли не играет. Как нам удобно, так и делаем. Самое главное – не порядок применения тождественных преобразований, а их правильность!

А можно из этого же равенства

3 x – 2 y = 5

выразить y через x ?

А почему – нет? Можно! Всё то же самое, только на этот раз нас интересует слева чистый игрек. Вот и очищаем игрек от всего лишнего.

Первым делом избавляемся от выражения . Перебрасываем его в правую часть:

–2 y = 5 – 3 x

Осталась двойка с минусом. Делим обе части на (-2):

И все дела.) Мы выразили y через х. Переходим к более серьёзным заданиям.

Как выразить переменную из формулы?

Не проблема! Точно так же! Если понимать, что любая формула – тоже уравнение .

Например, такое задание:

Из формулы

выразить переменную с.

Формула – тоже уравнение! Задание означает, что через преобразования из предложенной формулы нам надо получить какую-то новую формулу. В которой слева будет стоять чистая с , а справа – что уж получится, то и получится…

Однако… Как нам эту самую с вытаскивать-то?

Как-как… По шагам! Ясное дело, что выделить чистую с сразу невозможно: она в дроби сидит. А дробь умножается на r … Значит, первым делом очищаем выражение с буквой с , т.е. всю дробь целиком. Здесь можно поделить обе части формулы на r .

Получим:

Следующим шагом надо вытащить с из числителя дроби. Как? Легко! Избавимся от дроби. Нету дроби – нету и числителя.) Умножаем обе части формулы на 2:

Осталась элементарщина. Обеспечим справа букве с гордое одиночество. Для этого переменные a и b переносим влево:

Вот и всё, можно сказать. Осталось переписать равенство в привычном виде, слева направо и – ответ готов:

Это было несложное задание. А теперь задание на основе реального варианта ЕГЭ:

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа вычисляется по формуле

где с = 1500 м/с – скорость звука в воде,

f 0 – частота испускаемых импульсов (в МГц),

f – частота отражённого от дна сигнала, регистрируемая приёмником (в МГц).

Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 2 м/с.

"Многа букафф", да… Но буквы – это лирика, а общая суть всё равно та же самая . Первым делом надо выразить эту самую частоту отражённого сигнала (т.е. букву f ) из предложенной нам формулы. Вот этим и займёмся. Смотрим на формулу:

Напрямую, естественно, букву f никак не выдернешь, она снова в дробь запрятана. Причём и в числитель и в знаменатель. Поэтому самым логичным шагом будет избавиться от дроби. А там – видно будет. Для этого применяем второе преобразование – умножаем обе части на знаменатель.

Получим:

А вот тут – очередные грабли. Прошу обратить внимание на скобки обеих частях! Частенько именно в этих самых скобочках и кроются ошибки в подобных заданиях. Точнее, не в самих скобочках, а в их отсутствии.)

Скобки слева означают, что буква v умножается на весь знаменатель целиком . А не на его отдельные кусочки…

Справа же, после умножения, дробь исчезла и остался одинокий числитель. Который, опять же, весь целиком умножается на буковку с . Что и выражается скобками в правой части.)

А вот теперь скобки и раскрыть можно:

Отлично. Процесс идёт.) Теперь буковка f слева стала общим множителем . Выносим её за скобки:

Осталось всего ничего. Делим обе части на скобку (v - c ) и – дело в шляпе!

В принципе, всё готово. Переменная f уже выражена . Но можно дополнительно "причесать" полученное выражение – вынести f 0 за скобку в числителе и сократить всю дробь на (-1), тем самым избавившись от лишних минусов:

Вот такое выражение. А вот теперь и числовые данные подставить можно. Получим:

Ответ: 751 МГц

Вот и всё. Надеюсь, общая идея понятна.

Делаем элементарные тождественные преобразования с целью уединить интересующую нас переменную. Главное здесь - не последовательность действий (она может быть любой), а их правильность.

В этих двух уроках рассматриваются лишь два базовых тождественных преобразования уравнений. Они работают всегда . На то они и базовые. Помимо этой парочки, существует ещё множество других преобразований, которые тоже будут тождественными, но не всегда, а лишь при определённых условиях.

Например, возведение обеих частей уравнения (или формулы) в квадрат (или наоборот, извлечение корня из обеих частей) будет тождественным преобразованием, если обе части уравнения заведомо неотрицательны .

Или, скажем, логарифмирование обеих частей уравнения будет тождественным преобразованием, если обе части заведомо положительны. И так далее…

Подобные преобразования будут рассматриваться в соответствующих темах.

А здесь и сейчас - примеры для тренировки по элементарным базовым преобразованиям.

Простенькая задачка:

Из формулы

выразить переменную а и найти её значение при S =300, V 0 =20, t =10.

Задачка посложнее:

Средняя скорость лыжника (в км/ч) на дистанции в два круга рассчитывается по формуле:

где V 1 и V 2 – средние скорости (в км/ч) на первом и втором кругах соответственно. Какова была средняя скорость лыжника на втором круге, если известно, что первый круг лыжник пробежал со скоростью 15 км/ч, а средняя скорость на всей дистанции оказалась равной 12 км/ч?

Задача на основе реального варианта ОГЭ:

Центростремительное ускорение при движении по окружности (в м/с 2) можно вычислить по формуле a =ω 2 R , где ω – угловая скорость (в с -1), а R – радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 8,5 с -1 , а центростремительное ускорение равно 289 м/с 2 .

Задача на основе реального варианта профильного ЕГЭ:

К источнику с ЭДС ε=155 В и внутренним сопротивлением r =0,5 Ом хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, даётся формулой:

При каком сопротивлении нагрузки напряжение на ней будет 150 В? Ответ выразите в омах.

Ответы (в беспорядке): 4; 15; 2; 10.

А уж где числа, километры в час, метры, омы – это как-нибудь сами…)

Вверх