Межклеточное вещество

Соединительные ткани относятся к тканям внутренней среды и классифицируются на собственно соединительную ткань и скелетную ткань (хрящевая и костная). Собственно соединительная ткань делится на: 1) волокнистую, включа­ющую рыхлую и плотную, которая подразделяется на офор­мленную и неоформленную; 2) ткани со специальными свой­ствами (жировая, слизистая, ретикулярная и пигментная).

В состав рыхлой и плотной соединительной ткани входят клетки и межклеточное вещество. В рыхлой соединительной ткани много клеток и основного межклеточного вещества, в плотной - мало клеток и основного межклеточного веще­ства и много волокон. В зависимости от соотношения клеток и межклеточного вещества эти ткани выполняют различные функции. В частности, рыхлая соединительная ткань в боль­шей степени выполняет трофическую функцию и в мень­шей - опорно-механическую, а плотная соединительная ткань в большей степени - опорно-механическую функцию.

Общие функции соединительной ткани:

1) трофическая;

2) функция механической защиты (кости черепа);

3) опорно-механическая (костная, хрящевая ткани, сухожилия, апоне­врозы);

4) формообразующая (склера глаза придает глазу определенную форму);

5) защитная (фагоцитоз и иммуноло­гическая защита);

6) пластическая (способность адаптиро­ваться к новым условиям внешней среды, участие в заживле­нии ран);

7) участие в поддержании гомеостаза организма.

Рыхлая соединительная ткань (textus connectivus collagenosus laxus). Включает клетки и межклеточное вещество, которое состоит из основного межклеточного вещества и во­локон: коллагеновых, эластических и ретикулярных. Рыхлая соединительная ткань располагается под базальными бранами эпителия, сопровождает кровеносные и лимфат ские сосуды, образует строму органов.

Клетки:

1) фибробласты,

2) макрофаги,

3) плазмой

4) тканевые базофилы (тучные клетки, лаброциты),

5) адипоциты (жировые клетки),

6) пигментные клетки (пигментоциты, меланоциты),

7) адвентициальные клетки,

8) ретикуляр­ные клетки

9) лейкоциты крови.

Таким образом, в состав со­единительной ткани входят несколько дифферонов клеток.

Дифферон фибробластов: стволовая клетка, полустволо­вая, клетка-предшественник, малодифференцированные фибробласты, дифференцированные фибробласты и фибро­циты. Из малодифференцированных фибробластов могут развиваться миофибробласты и фиброкласты. В эмбриогене­зе фибробласты развиваются из мезенхимных клеток, а в постнатальном периоде - из стволовых и адвентициальных клеток.

Малодифференцированные фибробласты имеют удли­ненную форму, их длина около 25 мкм, содержат мало отро­стков; цитоплазма окрашивается базофильно, так как в ней имеется много РНК и рибосом. Ядро овальное, содержит глыбки хроматина и ядрышко. Функция этих фибробластов заключается в их способности к митотическому делению и дальнейшей дифференцировке, в результате которой они превращаются в дифференцированные фибробласты. Среди фибробластов есть долгоживущие и короткоживущие.

Дифференцированные фибробласты (fibroblastocytus) имеют вытянутую, уплощенную форму, их длина около 50 мкм, содержат много отростков, слабо базофильную цито­плазму, хорошо развитую гранулярную ЭПС, имеют лизосомы. В цитоплазме обнаружена коллагеназа. Ядро овальное, слабо базофильное, содержит рыхлый хроматин и ядрышки. По периферии цитоплазмы имеются тонкие филаменты, бла­годаря которым фибробласты способны передвигаться в межклеточном веществе.

Функции фибробластов:

1) секретируют молекулы колла­гена, эластина и ретикулина, из которых полимеризуются со­ответственно коллагеновые, эластические и ретикулярные волокна; секреция белков осуществляется всей поверхно­стью плазмолеммы, которая участвует в сборке коллагеновых волокон;

2) секретируют гликозаминогликаны, входящие в состав основного межклеточного вещества (кератансульфаты, гепарансульфаты, хондроитинсульфаты, дерматансульфаты и гиалуроновую кислоту);

3) секретируют фибронектин (склеивающее вещество);

4) белки, соединенные с гликозаминогликанами (протеогликаны).

Кроме того, фибробласты вы­полняют слабо выраженную фагоцитарную функцию.

Таким образом, дифференцированные фибробласты являются клетками, которые фактически формируют соединительную ткань. Там, где нет фибробластов, не может быть соедини­тельной ткани.

Фибробласты активно функционируют при наличии в организме витамина С, соединений Fe, Си и Сг. При гипо­витаминозе функция фибробластов ослабевает, т. е. пре­кращается обновление волокон соединительной ткани, не вырабатываются гликозаминогликаны, входящие в состав основного межклеточного вещества, что приводит к осла­блению и разрушению связочного аппарата организма, например зубных связок. Зубы при этом разрушаются и выпадают. В результате прекращения выработки гиалуроновой кислоты повышается проницаемость капилляр­ных стенок и окружающей соединительной ткани, что при­водит к мелкоточечным кровоизлияниям. Такое заболева­ние называется цингой.

Фиброциты образуются в результате дальнейшей дифференцировки дифференцированных фибробластов. Они со­держат ядра с грубыми глыбками хроматина, ядрышки в них отсутствуют. Фиброциты уменьшены в размерах, в цитоплаз­ме - малочисленные слабо развитые органеллы, функцио­нальная активность снижена.

Миофибробласты развиваются из малодифференцированных фибробластов. В их цитоплазме хорошо развиты миофиламенты, поэтому они способны выполнять сократи­тельную функцию. Миофибробласты имеются в стенке матки при наступлении беременности. За счет миофибробластов происходит, в значительной степени, нарастание массы гладкомышечной ткани стенки матки в ходе беременности.

Фиброкласты также развиваются из малодифференцированных фибробластов. В этих клетках хорошо развиты лизосомы, содержащие протеолитические ферменты, при­нимающие участие в лизисе межклеточного вещества и клеточных элементов. Фиброкласты принимают участие в рассасывании мышечной ткани стенки матки после ро­дов. Фиброкласты встречаются в заживающих ранах, где принимают участие в очищении ран от некротизированных структур тканей.

Макрофаги (macrophagocytus) развиваются из СКК, мо­ноцитов, они находятся везде в соединительной ткани, осо­бенно много их там, где богато развита кровеносная и лим­фатическая сеть сосудов. Форма макрофагов может быть овальной, округлой, вытянутой, размеры - до 20-25 мкм в диаметре. На поверхности макрофагов имеются псевдопо­дии. Поверхность макрофагов резко очерчена, на их цитолемме имеются рецепторы к антигенам, иммуноглобули­нам, лимфоцитам и другим структурам.

Ядра макрофагов имеют овальную, круглую или вытяну­тую форму, содержат грубые глыбки хроматина. Встречаются многоядерные макрофаги (гигантские клетки инородных тел, остеокласты). Цитоплазма макрофагов слабо базофильна, содержит много лизосом, фагосом, вакуолей. Органеллы общего значения развиты умеренно.

Функции макрофагов многочисленны. Основная функ­ция - фагоцитарная. При помощи псевдоподий макрофаги захватывают антигены, бактерии, чужеродные белки, ток­сины и другие вещества и при помощи ферментов лизосом переваривают их, осуществляя внутриклеточное пищева­рение. Кроме того, макрофаги выполняют секреторную функцию. Они выделяют лизоцим, разрушающий оболочку бактерий; пироген, повышающий температуру тела; интер­ферон, тормозящий развитие вирусов; секретируют интерлейкин-1 (ИЛ-1), под влиянием которого повышается синтез ДНК в В- и Т-лимфоцитах; фактор, стимулирующий образо­вание антител в В-лимфоцитах; фактор, стимулирующий дифференцировку Т- и В-лимфоцитов; фактор, стимулирую­щий хемотаксис Т-лимфоцитов и активность Т-хелперов; цитотоксический фактор, разрушающий клетки злокачествен­ных опухолей. Макрофаги принимают участие в иммунных реакциях. Они представляют антигены лимфоцитам.

В общей сложности макрофаги способны к прямому фаго­цитозу, фагоцитозу, опосредованному антителами, секреции биологически активных веществ, представлению антигенов лимфоцитам.

Макрофагическая система включает все клетки организ­ма, обладающие 3 основными признаками:

1) выполняют фа­гоцитарную функцию;

2) на поверхности их цитолеммы име­ются рецепторы к антигенам, лимфоцитам, иммуноглобули­нам и т. д.;

3) все они развиваются из моноцитов.

Примером таких макрофагов являются:

1) макрофаги (гистиоциты) рыхлой соединительной ткани;

2) купферовские клетки печени;

3) легочные макрофаги;

4) гигантские клетки инородных тел;

5) остеокласты костной ткани;

6) ретроперитонеальные макрофаги;

7) глиальные макрофаги нервной ткани.

Основоположником теории о системе макрофагов в орга­низме является И. И. Мечников . Он впервые понял роль макрофагической системы в защите организма от бактерий, ви­русов и других вредных факторов.

Тканевые базофилы (тучные клетки, лаброциты), вероят­но, развиваются из СКК, но точно это не установлено. Форма лаброцитов овальная, круглая, вытянутая и т. д. Ядра ком­пактные, содержат грубые глыбки хроматина. Цитоплазма слабо базофильна, содержит базофильные гранулы диаме­тром до 1,2 мкм.

В гранулах содержатся: 1) кристаллоидные, пластинча­тые, сетчатые и смешанные структуры; 2) гистамин; 3) гепа­рин; 4) серотонин; 5) хондроитинсерные кислоты; 6) гиалуроновая кислота.

В цитоплазме содержатся ферменты: 1) липаза; 2) кислая фосфатаза; 3) ЩФ; 4) АТФаза; 5) цитохромоксидаза и 6) гистидиндекарбоксилаза, являющаяся маркерным ферментом для лаброцитов.

Функции тканевых базофилов заключаются в том, что они, выделяя гепарин, снижают проницаемость капилляр­ной стенки и процессы воспаления, выделяя гистамин, повы­шают проницаемость капиллярной стенки и основного меж­клеточного вещества соединительной ткани, т. е. регулируют местный гомеостаз, усиливают воспалительные процессы и вызывают аллергические реакции. Взаимодействие лабро­цитов с аллергеном приводит к их дегрануляции, так как на их плазмолемме есть рецепторы к иммуноглобулинам типа Е. Лаброциты играют ведущую роль в развитии аллергиче­ских реакций.

Плазмоциты развиваются в процессе дифференцировки В-лимфоцитов, имеют круглую или овальную форму, диаметр 8-9 мкм; цитоплазма окрашивается базофильно. Однако около ядра имеется участок, который не окрашивается и называется «перинуклеарный дворик», в котором находятся комплекс Гольджи и клеточный центр. Ядро - круглое или овальное, перинуклеарным двориком смещено к периферии, содержит гру­бые глыбки хроматина, располагающиеся в виде спиц в колесе. В цитоплазме хорошо развита гранулярная ЭПС, много рибо­сом. Остальные органеллы развиты умеренно. Функция плазмоцитов - выработка иммуноглобулинов, или антител.

Адипоциты (жировые клетки) располагаются в рыхлой со­единительной ткани в виде отдельных клеток или группами. Одиночные адипоциты имеют круглую форму, всю клетку за­нимает капля нейтрального жира, состоящая из глицерина и жирных кислот. Кроме того, там имеются холестерин, фосфолипиды, свободные жирные кислоты. Цитоплазма клетки вместе с уплощенным ядром оттеснена к цитолемме. В цито­плазме имеются малочисленные митохондрии, пиноцитоз- ные пузырьки и фермент глицеролкиназа.

Функциональное значение адипоцитов заключается в том, что они являются источниками энергии и воды.

Развиваются адипоциты чаще всего из малодифференцированных адвентициальных клеток, в цитоплазме которых начинают накапливаться капельки липидов. Всосавшиеся из кишечника в лимфатические капилляры, капельки липидов, называемые хиломикронами, транспортируются в те места, где находятся адипоциты и адвентициальные клетки. Под влиянием липопротеидлипаз, выделяемых эндотелиоцитами капилляров, хиломикроны расщепляются на глицерин и жирные кислоты, которые поступают либо в адвентициальную, либо в жировую клетку. Внутри клетки глицерин и жир­ные кислоты соединяются в нейтральный жир под действием глицеролкиназы.

В том случае, если в организме возникла необходимость в энергии, из мозгового вещества надпочечников выделяется адреналин, который захватывается рецептором адипоцита. Адреналин стимулирует аденилатциклазу, под действием ко­торой синтезируется сигнальная молекула, т. е. цАМФ. цАМФ стимулирует липазу адипоцита, под влиянием которой ней­тральный жир расщепляется на глицерин и жирные кисло­ты, которые выделяются адипоцитом в просвет капилляра, где они соединяются с белком и затем в виде липопротеида транспортируются в те места, где необходима энергия.

Инсулин стимулирует отложение липидов в адипоцитах и препятствует выходу их из этих клеток. Поэтому если в ор­ганизме недостаточно инсулина (диабет), то адипоциты теря­ют липиды, при этом больные худеют.

Пигментные клетки (меланоциты) находятся в соедини­тельной ткани, хотя они не являются собственно соедини­тельнотканными клетками, развиваются из нервного гребня. Меланоциты имеют отростчатую форму, светлую цитоплаз­му, бедную органеллами, содержащую гранулы пигмента ме­ланина.

Адвентициалъные клетки располагаются вдоль крове­носных сосудов, имеют веретеновидную форму, слабо базофильную цитоплазму, содержащую рибосомы и РНК.

Функциональное значение адвентициальных клеток за­ключается в том, что они являются малодифференцированными клетками, способными к митотическому делению и дифференцировке в фибробласты, миофибробласты, адипоциты в процессе накопления в них капелек липидов.

В соединительной ткани много лейкоцитов, которые, циркулируя в крови несколько часов, затем мигрируют в сое­динительную ткань, где выполняют свои функции.

Перициты входят в состав стенки капилляров, имеют отростчатую форму. В отростках перицитов имеются сокра­тительные филаменты, при сокращении которых суживает­ся просвет капилляра.

Межклеточное вещество рыхлой соединительной ткани. Межклеточное вещество рыхлой соединительной тка­ни включает коллагеновые, эластические и ретикулярные во­локна и основное (аморфное) вещество.

Коллагеновые волокна (fibra collagenica) состоят из бел­ка коллагена, имеют толщину 1-10 мкм, неопределенной ве­личины длину, извилистый ход. Коллагеновые белки имеют 14 разновидностей (типов). Коллаген I типа имеется в волок­нах костной ткани, сетчатом слое дермы. Коллаген II типа входит в состав гиалинового и волокнистого хрящей и в сте­кловидное тело глаза. Коллаген III типа входит в состав рети­кулярных волокон. Коллаген IV типа имеется в волокнах базальных мембран, капсулы хрусталика. Коллаген V типа располагается вокруг тех клеток, которые его вырабатывают (гладкие миоциты, эндотелиоциты), образуя вокругклеточный, или перицеллюлярный, скелет. Остальные типы колла­гена мало изучены.

Формирование коллагеновых волокон осуществляется в процессе 4 уровней организации.

I уровень - молекуляр­ный, или внутриклеточный;

II уровень - надмолекулярный, или внеклеточный;

III уровень - фибриллярный;

IV уро­вень - волоконный.

I уровень (молекулярный) характеризуется тем, что на гранулярной ЭПС фибробластов синтезируются молекулы коллагена (тропоколлаген) длиной 280 нм и диаметром 1,4 нм. Состоят молекулы из 3 цепочек аминокислот, чере­дующихся в определенном порядке. Эти молекулы выделяют­ся из фибробластов всей поверхностью их цитолеммы.

II уровень (надмолекулярный) характеризуется тем, что молекулы коллагена (тропоколлаген) соединяются своими концами, в результате чего образуются протофибриллы. 5-6 протофибрилл соединяются своими боковыми поверхностя­ми, и в результате образуются фибриллы диаметром около 10 нм.

III уровень (фибриллярный) характеризуется тем, что об­разовавшиеся фибриллы соединяются своими боковыми по­верхностями, в результате чего образуются микрофибриллы диаметром 50-100 нм. В этих фибриллах видны светлые и темные полосы (поперечная исчерченность) шириной око­ло 64 нм.

IV уровень (волоконный) заключается в том, что микро­фибриллы соединяются своими боковыми поверхностями, в результате чего образуются коллагеновые волокна диаме­тром 1-10 мкм.

Функциональное значение коллагеновых волокон состоит в том, что они придают механическую прочность соедини­тельной ткани. Например, на коллагеновой нити диаметром 1 мм можно подвесить массу, равную 70 кг. Коллагеновые во­локна набухают в растворах кислот и щелочей. Они анастомозируют друг с другом.

Эластические волокна более тонкие, имеют прямой ход; соединяясь друг с другом, они образуют широкопетли­стую сеть, состоят из белка эластина. Формирование эласти­ческих волокон претерпевает 4 уровня организации: I уро­вень - молекулярный, или внутриклеточный; II уровень - надмолекулярный, или внеклеточный; III уровень - фибрил­лярный; IV уровень - волоконный.

1 уровень (молекулярный) характеризуется образованием на гранулярной ЭПС фибробластов шаров, или глобул диаме­тром около 2,8 нм, которые выделяются из клетки.

2 уровень (надмолекулярный) характеризуется соедине­нием глобул в цепочки (протофибриллы) диаметром около 3,5 нм.

3 уровень (фибриллярный), в результате которого глико- протеины наслаиваются на протофибриллы в виде оболочки и образуются фибриллы диаметром 10 нм.

4 уровень (волоконный), в результате которого фибрил­лы, соединяясь, образуют пучок, или трубочку. Эти трубочки называются окситалановыми волокнами. Затем в просвет эт­их трубочек внедряется аморфное вещество.

Когда количе­ство аморфного вещества в формирующихся волокнах увеличится до 50 % по отношению к фибриллам, эти волокна пре­вратятся в элауниновые; когда количество аморфного веще­ства достигнет 90 %, эти волокна и есть зрелые, эластические волокна. Окситалановые и элауниновые - незрелые эласти­ческие волокна.

Функциональное значение эластических волокон заключается в том, что они придают эластичность соеди­нительной ткани. Эластические волокна менее прочны на разрыв по сравнению с коллагеновыми волокнами, но зато более растяжимы.

Ретикулярные волокна состоят из белка коллагена III типа. Эти белки также вырабатываются фибробластами. Формирование ретикулярных волокон тоже претерпевает 4 уровня организации, точно так же, как и коллагеновых волокон. В фибриллах ретикулярных волокон имеется ис- черченность в виде светлых и темных полос шириной 64-67 нм (как и в коллагеновых волокнах). Ретикулярные волокна менее прочны, но более растяжимы, чем коллагеновые волокна, но зато более прочны и менее растяжимы, чем эластические волокна. Ретикулярные волокна, перепле­таясь, образуют сеть.

Основное (аморфное) межклеточное вещество (sub­stantia fundamentalis) имеет полужидкую консистенцию. Оно формируется частично за счет плазмы крови, из которой по­ступают вода, минеральные соли, альбумины, глобулины и другие вещества, и частично за счет функциональной дея­тельности фибробластов и тканевых базофилов. В частности, фибробласты выделяют в межклеточное вещество гликозаминогликаны сульфатированные (хондроитинсульфаты, кератансульфаты, гепарансульфаты, дерматансульфаты) и несульфатированные (гиалуроновую кислоту); гликопротеины (белки, соединенные с короткими сахаридными цепями). От количества гиалуроновой кислоты, в основном, зависит консистенция и проницаемость основного межклеточного ве­щества. Наиболее жидкое основное межклеточное вещество располагается около кровеносных и лимфатических сосудов. На границе с эпителиальной тканью основное межклеточное вещество более плотное и находится в большем количестве.

Функциональное значение основного межклеточного ве­щества заключается в том, что через него происходит обмен веществ между кровеносным руслом капилляров и паренхимными клетками. В основном межклеточном веществе происходит полимеризация коллагеновых, эластических и ретикулярных волокон. Основное вещество обеспечивает жизнедеятельность клеток соединительной ткани.

Интенсивность обмена веществ зависит от проницаемости основного межклеточного вещества. Проницаемость за­висит от количества свободной воды, гиалуроновой кислоты, активности гиалуронидазы, концентрации гликозаминогликанов и гистамина. Чем больше гликозаминогликанов (гиалу­роновой кислоты), тем меньше проницаемость. Гиалуронидаза разрушает гиалуроновую кислоту, тем самым повышая проницаемость. Гистамин также повышает проницаемость основного межклеточного вещества. В рефляции проница­емости основного вещества соединительной ткани принима­ют участие базофильные гранулоциты и тучные клетки, выделяя то гепарин, то гистамин, а также эозинофильные гранулоциты, разрушающие гистамин при помощи фермен­та гистаминазы.

Гиалуронидаза содержится в бактериях и вирусах. Благо­даря гиалуронидазе эти микроорганизмы повышают прони­цаемость базальных мембран, основного межклеточного ве­щества и стенок капилляров и проникают во внутреннюю среду организма, вызывая различные заболевания.

Плотная соединительная ткань. Характеризуется наи­меньшим количеством клеточных элементов и основного межклеточного вещества, в ней преобладают волокна, в ос­новном коллагеновые.

Плотная соединительная ткань подразделяется на нео­формленную и оформленную. Примером неоформленной со­единительной ткани является сетчатый слой дермы.

Плотная оформленная соединительная ткань пред­ставлена сухожилиями, связками, апоневрозами мышц, кап­сулами суставов, оболочками некоторых органов, белочными оболочками глаза, мужской и женской половых желез, твердой мозговой оболочкой, надкостницами и надхрящницами.

Сухожилие (tendo) состоит из параллельно расположенных волокон, образующих пучки I, II и III порядков. Пучки I поряд­ка отделены друг от друга сухожильными клетками, или фи­броцитами, несколько пучков I порядка складываются в пучки II порядка, которые отделены друг от друга прослойкой рыхлой соединительной ткани, называемой эндотенонием (endotendium); несколько пучков II порядка складываются в пучки III по­рядка. Пучком III порядка может быть само сухожилие. Пучки III порядка окружены прослойкой рыхлой соединительной тка­ни, называемой перитенонием (peritendium). В прослойках рыхлой соединительной ткани эндотенония и перитенония проходят кровеносные и лимфатические сосу­ды и нервные волокна, заканчивающиеся в нервно-сухо- жильных веретенах, т. е. чувствительных нервных оконча­ниях сухожилий.

Функциональное значение сухожилий заключается в том, что с их помощью мышцы прикрепляются к костно­му скелету.

Соединительнотканные пластинки (фасции, апоневро­зы, сухожильные центры и др.) характеризуются параллель­ным послойным расположением коллагеновых волокон. Коллагеновые волокна одного слоя пластинки располагаются под углом по отношению к волокнам другого слоя. Волокна из одного слоя могут переходить в соседний слой. Поэтому слои апоневрозов, фасций и т. д. разделить довольно трудно. Та­ким образом, соединительнотканные пластинки отличаются от сухожилий тем, что коллагеновые волокна располагаются в них не пучками, а слоями. Между слоями коллагеновых во­локон располагаются фиброциты и фибробласты.

Связки (ligamentum) по своему строению похожи на сухо­жилия, но отличаются от них менее строгим расположением волокон. Среди связок выделяется выйная связка (ligamen­tum nuchae), которая отличается тем, что вместо коллагено­вых волокон содержит эластические волокна.

В капсулах, белочных оболочках, надкостницах, надхрящ­ницах, твердой мозговой оболочке в отличие от фасций и апо­неврозов отсутствует строгое расположение коллагеновых волокон.

Плотная неоформленная соединительная ткань, расположенная в сетчатом слое кожи, отличается неправиль­ным (разнонаправленным) расположением коллагеновых и эластических волокон, развивается из дерматома мезодермальных сомитов.

Функциональное значение этой ткани заключается в обеспечении механической прочности кожи.

Соединительные ткани со специальными свойствами. К тканям со специальными свойствами относятся жировая, ретикулярная, слизистая и пигментная. Особенностью этих тканей является преобладание какого-то одного вида клеток. Так, например, в жировой ткани преобладают адипоциты, в пигментной - меланоциты, и т. д.

Ретикулярная ткань (textus reticularis) является стро- мой органов кроветворения, за исключением тимуса, в котором стромой является эпителиальная ткань. Ретикулярная ткань состоит из ретикулярных клеток и тесно связанных с ними ретикулярных волокон и основного межклеточного вещества. Ретикулярные клетки подразделяются на 3 раз­новидности: 1) фибробластоподобные клетки, выполняющие такую же функцию, как и фибробласты рыхлой соединитель­ной ткани, т. е. вырабатывают коллаген III типа, из которого состоят ретикулярные волокна, и секретируют основное межклеточное вещество; 2) макрофагические ретикулоциты, выполняющие фагоцитарную функцию; 3) малодифференцированные клетки, которые в процессе дифференцировки превращаются в фибробластоподобные ретикулоциты.

Ретикулярные волокна вплетаются в отростки фибробластоподобных ретикулоцитов и вместе с ними образуют сеть (reticulum), в петлях которой располагаются гемопоэтические клетки. Ретикулярные волокна окрашиваются сере­бром, поэтому называются аргентофильными. Преколлагеновые (незрелые коллагеновые) волокна тоже окрашиваются серебром и тоже называются аргентофильными, но к ретику­лярным волокнам они никакого отношения не имеют.

Жировая ткань делится на белую и бурую жировую тка­ни. Белая жировая ткань находится в подкожной жировой клетчатке. Ее особенно много в области кожи живота, бедер, ягодиц, в малом и большом сальниках, ретроперитонеально (забрюшинно). Она состоит из жировых клеток - адипоцитов, цитоплазма которых заполнена каплей нейтрального жира. Адипоциты в жировой ткани образуют дольки, окру­женные прослойками рыхлой соединительной ткани, в кото­рых проходят кровеносные и лимфатические капилляры и нервные волокна.

При длительном голодании липиды выделяются из адипоцитов, которые приобретают звездчатую форму, и человек при этом худеет. При возобновлении питания в адипоцитах появляются сначала включения гликогена, затем - капли липидов, которые соединяются в одну большую каплю, оттес­няющую ядро с цитоплазмой на периферию клетки.

Однако не во всех местах тела при голодании быстро ис­чезают липиды из адипоцитов. Ткк, например, жировая ткань подкожно-жировой клетчатки ладонной поверхно­сти кистей рук, подошв стоп ног, а также орбит глаза сохра­няется и после длительного голодания, потому что эта ткань выполняет опорно-механическую (амортизацион­ную) функцию.

Бурая жировая ткань в организме новорожденных рас­полагается в подкожно-жировой клетчатке в области шеи, лопаток, вдоль позвоночного столба и за грудиной. Адипоциты этой ткани характеризуются тем, что имеют полигональ­ную форму, сравнительно небольшие размеры, их круглые ядра располагаются в центре, капельки липидов диффузно рассеяны в цитоплазме. В последней много митохондрий, в которых имеются железосодержащие бурые пигменты - цитохромы.

Функциональное значение бурой жировой ткани заклю­чается в том, что она обладает высокой окислительной спо­собностью, при этом выделяется много тепловой энергии, согревающей тело грудного ребенка. При воздействии адре­налина и норадреналина на адипоциты жировой ткани про­исходит расщепление липидов. При голодании организма бурая жировая ткань изменяется менее значительно, чем белая. Между адипоцитами бурой жировой ткани проходят многочисленные капилляры.

Слизистая соединительная ткань находится в пупоч­ном канатике плода. В ее состав входят мукоциты (фибробластоподобные клетки): коллагеновых волокон сравнительно мало, много основного межклеточного вещества, содержаще­го большое количество гиалуроновой кислоты. Функция мукоцитов - вырабатывают много гиалуроновой кислоты и мало молекул коллагена. Благодаря богатому содержанию гиалуро­новой кислоты, слизистая ткань (textus mucosus) обладает высокой упругостью. Функциональное значение слизистой ткани заключается в том, что, благодаря ее упругости, не сда­вливаются кровеносные сосуды пупочного канатика при его сжатии или сгибе.

Пигментная ткань у представителей белой расы вы­ражена слабо. Она находится в радужной оболочке, вокруг сосков молочных желез, анального отверстия и в мошонке. Основными клетками этой ткани являются пигментоциты, развивающиеся из нервного гребня.

Оно состоит из двух структурных компонентов:

· основного или аморфного вещества;

· волокон.

Основное или аморфное вещество состоит из белков и углеводов. Белки представлены в основном коллагеном, а также альбуминами и глобулинами. Углеводы представлены полимерными формами, в основном гликозоаминогликанами (сульфатированными - хондроитинсерными кислотами, дерматансульфатом, кератинсульфатом, гепаринсульфатом, и несульфатированными - гиалуроновой кислотой). Углеводные компоненты, образуя длинные полимерные цепи, способны удерживать воду в различном количестве. Количество воды зависит от качества углеводного компонента. В зависимости от содержания воды аморфное вещество может быть более или менее плотным (в форме золя или геля), что определяет и функциональную роль данной разновидности соединительной ткани. Аморфное вещество обеспечивается транспорт веществ из соединительной ткани к эпителиальной ткани и обратно, в том числе транспорт веществ из крови к клеткам и обратно. Аморфное вещество образуется прежде всего за счет деятельности фибробластов (коллаген, гликозоаминогликаны), а также за счет веществ плазмы крови (альбумины, глобулины).

Волокнистый компонент межклеточного вещества представлен коллагеновыми, эластическими и ретикулярными волокнами. В различных органах соотношение названных волокон неодинаково. В рыхлой соединительной волокнистой ткани преобладают коллагеновые волокна.

Коллагеновые (клей-дающие) волокна имеют белый цвет и различную толщину (от 1-3 до 10 и более мкм). Они обладают высокой прочностью и малой растяжимостью, не ветвятся, при помещении в воду набухают, при нахождении в кислотах и щелочах увеличиваются в объеме и укорачиваются на 30 %. Каждое волокно состоит из двух химических компонентов:

· фибриллярного белка коллагена;

· углеводного компонента - гликозоаминогликанов и протеогликанов.

Оба эти компонента синтезируются фибробластами и выделяются во внеклеточную среду, где и осуществляется их сборка и построение волокна. В структурной организации коллагенового волокна выделяют пять уровней. Первый (полипептидный) уровень представлен полипептидными цепочками, состоящих из трех аминокислот: пролина, глицина, лизина. Второй (молекулярный) уровень представлен молекулой белка коллагена (длина 280 нм, ширина 1,4 нм), состоящей из трех полипептидных цепочек, закрученных в спираль. Третий уровень - протофибриллы (толщиной до 10 нм), состоящие из нескольких продольно расположенных молекул коллагена, соединенных между собой водородными связями. Четвертый уровень -микрофибриллы (толщиной от 11-12 нм и более), состоящие из 5-6 протофибрилл, связанных боковыми цепями. Пятый уровень - фибрилла или коллагеновое волокно (толщина 1-10 мкм) состоящие из нескольких микрофибрилл (в зависимости от толщины), связанных гликозоаминогликанами и протеогликанами. Коллагеновые волокна имеют поперечную исчерченность, обусловленную как расположением цепей в молекуле коллагена, так и расположением аминокислот в полипептидных цепях. Коллагеновые волокна с помощью углеводных компонентов соединяются в пучки толщиной до 150 нм.

В зависимости от порядка расположения аминокислот в полипептидных цепочках, от степени их гидроксилирования и от качества углеводного компонента различают 12 типов белка коллагена, из которых хорошо изучены пять типов. Эти разновидности белка коллагена входят не только в состав коллагеновых волокон, но и в состав базальных мембран эпителиальных тканей, хрящевых тканей, стекловидного тела и других структур. При развитии некоторых патологических процессов происходит распад коллагена и поступление его в кровь. В плазме крови биохимически определяется тип коллагена, а следовательно определяется и предположительная область распада и его интенсивность.

Эластические волокна характеризуются высокой эластичностью, то есть способностью растягиваться и сокращаться, но незначительной прочностью, устойчивы к кислотам и щелочам, при погружении в воду не набухают. Эластические волокна тоньше коллагеновых (1-2 мкм), не имеют поперечной исчерченности, по ходу разветвляются и анастомозируют друг с другом, образуя часто эластическую сеть. Химический составбелок эластин и гликопротеины. Оба компонента синтезируются и выделяются фибробластами, а в стенке сосудов - гладкомышечными клетками. Белок эластин отличается от белка коллагена как составом аминокислот, так и их гидроксилированностью. Структурно эластическое волокно организовано следующим образом: центральная часть волокна представлена аморфным компонентом из молекул эластина , периферическая часть представлена мелкофибриллярной сетью. Соотношение аморфного и фибриллярного компонента в эластических волокнах может быть различным. В большинстве волокон преобладает аморфный компонент. При равенстве аморфного и фибриллярного компонентов волокна называются элауниновыми . Встречаются также эластические волокна - окситалановые, состоящие только из фибриллярного компонента. Локализуются эластические волокна прежде всего в тех органах, которые постоянно изменяют свой объем (в легких, сосудах, аорте, связки и другие).

Ретикулярные волокна по своему химическому составу близки к коллагеновым, так как они состоят из белка коллагена (3 типа) и углеводного компонента. Ретикулярные волокна тоньше коллагеновых, имеют слабовыраженную поперечную исчерченность. Разветвляясь и анастомозируя, они образуют мелкопетлистые сети, откуда и происходит их название. В ретикулярных волокнах в отличие от коллагеновых, более выражен углеводный компонент, который хорошо выявляется солями азотнокислого серебра и потому эти волокна еще называются аргирофильными . Следует помнить однако, что аргирофильными свойствами обладают и незрелые коллагеновые волокна, состоящие из белка проколлагена. По своим физическим свойствам ретикулярные волокна занимают промежуточное положение между коллагеновыми и эластическими волокнами. Образуются они за счет деятельности не фибробластов, а ретикулярных клеток. Локализуется в основном в кроветворных органах, составляя их строму.

Плотная волокнистая соединительная ткань отличается от рыхлой преобладанием в межклеточном веществе волокнистого компонента над аморфным. В зависимости от характера расположения волокон плотная волокнистая соединительная ткань подразделяется на оформленную - волокна располагаются упорядочено, то есть обычно параллельно друг другу, и неоформленную - волокна расположены неупорядочено. Плотная оформленная соединительная ткань представлена в организме в виде сухожилий, связок, фиброзных мембран. Плотная волокнистая соединительная неоформленная ткань образует сетчатый слой дермы кожи. Помимо содержания большого числа волокон, плотная волокнистая соединительная ткань характеризуется бедностью клеточных элементов, которые представлены в основном фиброцитами.

Сухожилие состоит в основном из плотной оформленной соединительной ткани, но содержит также и рыхлую волокнистую соединительную ткань, образующую прослойки. На поперечном срезе сухожилия видно, что оно состоит из параллельно расположенных коллагеновых волокон, образующих пучки 1, 2, 3 и возможно 4 порядков. Пучки 1 порядка, наиболее тонкие, отделены друг от друга фиброцитами. Пучки 2 порядка состоят из нескольких пучков 1 порядка, окруженных по периферии прослойкой рыхлой волокнистой соединительной ткани, составляющей эндотеноний. Пучки 3 порядка состоят из пучков 2 порядка и окружены более выраженными прослойками рыхлой соединительной ткани - перитенонием . Все сухожилие окружено по периферии эпитенонием . В прослойках рыхлой волокнистой соединительной ткани проходят сосуды и нервы, обеспечивающие трофику и иннервацию сухожилия.

У новорожденных и детей в волокнистой соединительной ткани в аморфном веществе содержится много воды, связанной гликозоаминогликанами. Коллагеновые волокна тонкие и состоят не только из белка коллагена, но и проколлагена . Эластические волокна хорошо развиты. Аморфный и волокнистый компонент соединительной ткани в совокупности обуславливает упругость и эластичность кожи у детей. С увеличением возраста в постнатальном онтогенезе содержание гликозоаминогликанов в аморфном веществе уменьшается, а вместе с ними уменьшается и содержание воды. Коллагеновые волокна разрастаются и образуют толстые грубые пучки. Эластические волокна в значительной степени разрушаются, вследствие этого кожа у пожилых и старых людей становится неэластичной и дряблой.

Характерной особенностью строения соединительной ткани является наличие, помимо клеток, хорошо выраженного межклеточного вещества, состоящего из основного аморфного вещества и специальных (соединительнотканных) волокон. В эту группу тканей включают собственно соединительную ткань, хрящевую ткань и костную ткань. В связи с общностью происхождения (развиваются из мезенхимы) к разновидностям соединительной ткани раньше относили кровь и лимфу, сейчас их принято выделятъ в отдельную группу.

Собственно соединительная ткань объединяет группу тканей. К ним относятся: рыхлая волокнистая (неоформленная) соединительная ткань, плотная волокнистая соединительная ткань, ретикулярная соединительная ткань, жировая ткань и др. Каждая из этих тканей имеет свои морфофункциональные особенности.

Соединительная ткань выполняет в организме различные функции. Основные из них - механическая, трофическая и защитная. Механическая функция состоит в том, что соединительная ткань образует строму (остов) различных органов, которая связывает другие ткани органа и выполняет опорную роль. Трофическая функция определяется участием соединительной ткани в процессах обмена веществ в организме. Защитная функция объясняется наличием в соединительной ткани специальных клеток, обладающих свойством фагоцитировать и принимающих участие в выработке антител. Некоторые виды соединительной ткани выполняют не все эти функции, а какие-то определенные, например механическую или трофическую и защитную.

Рыхлая волокнистая (неоформленная) соединительная ткань (рис. 4) сопровождает кровеносные сосуды и образует строму многих органов. Она выполняет не только опорную, но и трофическую функцию, участвуя в обменных процессах между кровью и другими тканями органов. Межклеточное вещество этой ткани состоит из основного вещества и коллагеновых и эластических волокон. Основное вещество является коллоидом, имеющим вид геля. Коллагеновые (клейдающие) волокна сравнительно толстые, состоят из фибрилл, включающих специальный белок - коллаген. Они чрезвычайно прочны и способны к набуханию. Эластические волокна тонкие, имеют вид ветвящихся нитей, образующих широкопетлистую сеть. Название ткани определяется рыхлым расположением ее волокон, идущих в разном направлении.

Клеточные элементы рыхлой волокнистой соединительной ткани разнообразны. К ним относятся малодифференцированные клетки (способны превращаться в другие клеточные формы соединительной ткани), фибробласты (участвуют в образовании основного вещества и волокон межклеточного вещества), макрофаги (клетки, способные к фагоцитозу), плазматические клетки (участвуют в синтезе антител), жировые, пигментные клетки и др. С наличием макрофагов и некоторых других клеток связана защитная функция ткани.

Плотная волокнистая соединительная ткань характеризуется наличием большого количества плотно расположенных волокон; основного межклеточного вещества и клеток в ней мало. Различают неоформленную и оформленную плотную волокнистую соединительную ткань. В неоформленной плотной волокнистой соединительной ткани коллагеновые и эластические волокна переплетаются и идут в разных направлениях. Эта ткань образует соединительнотканную основу кожи (ее сетчатый слой). В оформленной плотной волокнистой соединительной ткани (рис. 5) коллагеновые волокна образуют пучки, идущие в определенном направлении параллельно друг другу. Из нее состоят сухожилия, связки, фасции и часть оболочек других органов.


Ретикулярная соединительная ткань (рис. 6) образует остов кроветворных органов: красного костного мозга, лимфатических узлов и селезенки, и входит в состав некоторых внутренних органов (почки и др.). Они состоят из ретикулярных клеток и ретикулярных волокон. Ретикулярные клетки имеют многочисленные отростки, которыми соединяются между собой и образуют сетчатый остов (fete - сеть). Ретикулярные волокна напоминают тонкие нити; они идут в различных направлениях и образуют нежную сеточку. Отмечено характерное свойство клеток ретикулярной ткани: одни из них способны превращаться в иные клеточные формы (например, в кроветворные клетки, макрофаги и т. д.), а другие обладают способностью к фагоцитозу.


Жировая ткань образует подкожный жировой слой, находится в сальниках, около некоторых органов (например, вокруг почек). Это разновидность соединительной ткани, содержащей клетки, способные накапливать жир (жировые клетки). В жировой ткани имеются и другие клетки, например фибробласты. Прослойками рыхлой соединительной ткани она подразделяется на дольки разных размеров. Жировая ткань является депо жира, а также принимает участие в процессах физической теплорегуляции (является плохим проводником тепла) и выполняет роль мягкой подстилки для некоторых органов.

Хрящевая ткань представляет собой разновидность соединительной ткани, состоит из клеток и большого количества плотного межклеточного вещества. Хрящевые клетки, или хондроциты, имеют овальную или округлую форму, расположены по одной или группами в полостях, образованных межклеточным веществом. Межклеточное вещество представлено основным веществом и волокнами, имеет различное строение. В зависимости от особенностей межклеточного вещества различают три разновидности хрящевой ткани, или хряща: гиалиновый, эластический и волокнистый. Снаружи хрящи покрыты надхрящницей, состоящей из плотной волокнистой ткани, в которой имеются хондробласты (клетки, образующие хрящ). Хрящевые ткани (хрящи) отличаются упругостью и играют преимущественно механическую роль (рис. 7).


Гиалиновый хрящ (рис. 7, а) образует почти все суставные хрящи, реберные хрящи, хрящи стенок воздухоносных путей. Он голубовато-белого цвета, полупрозрачный и плотный. В межклеточном веществе хрящевой ткани, помимо основного вещества, содержатся коллагеновые волокна. И волокна, и основное вещество имеют почти одинаковый показатель преломления, поэтому для выявления волокон под микроскопом гиалиновый хрящ предварительно подвергают специальной обработке. У пожилых людей гиалиновые хрящи могут обызвествляться.

Эластический хрящ образует хрящи ушной раковины, надгортанный, рожковидные и клиновидные хрящи гортани, хрящ слуховой трубы и др. Он слегка желтоватой окраски. В межклеточном веществе эластических хрящей, помимо коллагеновых, имеются эластические волокна. Они образуют густую сеть, пронизывающую основное вещество. Эластические хрящи, как правило, не обызвествляются.

Волокнистый хрящ входит в состав межпозвоночных дисков, образует хрящ лобкового симфиза, суставные хрящи грудино-ключичного и височно-нижнечелюстного сочленений. Межклеточное вещество этих хрящей состоит из плотной волокнистой соединительной ткани, содержащей большое количество коллагеновых волокон, что придает таким хрящам особую крепость. В полостях, образованных межлеточным веществом, находятся хрящевые клетки.

Костная ткань - особая разновидность соединительной ткани. Характерное отличие ее - обызвествленность межклеточного вещества. Она образует все кости скелета, определяя их опорную и защитную роль и участие в движениях в качестве рычагов. Одновременно костная ткань является депо минеральных веществ (преимущественно кальция и фосфора). Эта ткань, как и другие разновидности соединительной ткани, состоит из клеток и межклеточного вещества.

Клетки костной ткани называются остеоцитами (osteon - кость, cytis - клетка), имеют отростчатую форму. Тела клеток находятся в полостях, а отростки - в канальцах, образованных межклеточным веществом. Канальцы соединяются между собой, по ним происходит обмен веществ между тканевой жидкостью и остеоцитами. В развивающихся костях, помимо остеоцитов, имеются остеобласты и остеокласты (osteon - кость, blastos - зачаток, clao - разрушать). Они принимают участие в формировании кости: остеобласты являются костеобразующими клетками, а остеокласты - костеразрушающими (см. "Развитие кости"). В сформированной кости такие клетки встречаются только в местах разрушения и восстановления костной ткани.

Межклеточное вещество костной ткани состоит из основного вещества и волокон. Основное вещество пропитано минеральными солями, преимущественно солями кальция и фосфора. Они придают кости твердость. Волокна межклеточного вещества по своей природе являются коллагеновыми, но называются оссеиновыми. В обызвествленном основном веществе они образуют пучки. В зависимости от расположения пучков различают два вида костной ткани: грубоволокнистую и пластинчатую.

Грубоволокнистая костная ткань характеризуется тем, что пучки оссеиновых волокон не имеют определенной ориентации и расположены в разных направлениях. Внутри пучков волокна тоже лежат без особого порядка. Из этой ткани состоят кости зародыша. По мере развития скелета у плода и ребенка грубоволокнистая ткань замещается пластинчатой. У взрослого человека грубоволокнистая ткань сохраняется только в местах прикрепления к костям сухожилий и в области швов черепа.

Пластинчатая костная ткань (рис. 8) состоит из костных пластинок, в которых оссеиновые волокна расположены в виде параллельно ориентированных пучков. Направление пучков в разных костных пластинках неодинаково. Такое строение костной ткани придает ей особую прочность. Из пластинчатой костной ткани построены компактное и губчатое вещество костей взрослого человека.


МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО - составная часть соединительной ткани позвоночных и многих беспозвоночных животных, включающая соединительнотканные волокна и аморфное основное вещество, выполняющая механическую, опорную, защитную и трофическую функции.

М. в. образуется у зародыша из белков, углеводов, липидов, продуцируемых клетками эмбриональной соединительной ткани, начиная со стадии гаструлы. Гистогенез М. в. продолжается и в постэмбриональном периоде. Наибольшая роль в образовании М. в. принадлежит фибробластам, хондробластам, остеобластам. Полагают, что в образовании М. в. волокнистой соединительной ткани могут участвовать гистиоциты, лаброциты (тучные клетки) и др.

Соединительнотканные волокна М. в. могут быть представлены коллагеновыми, эластическими, ретикулярными, или ретикулиновыми (аргирофильными), и другими волокнами, от чего зависит прочность, эластичность и в определенной степени архитектоника соединительной ткани органов (дерма различных участков кожи, сухожилия, строма кроветворных органов и др.).

Аморфное основное вещество, окружающее соединительнотканные волокна и клетки соединительной ткани, состоит из высокополимерных соединений, от концентрации и состава которых в различных видах соединительной ткани зависят физ., хим. и биол, свойства М. в. (вязкость, гидрофильности интенсивность метаболических процессов, тургор и др.).

Состав волокон и аморфного вещества неодинаков в различных видах соединительной ткани, в различных ее топографических участках М. в. может быть минерализованным. При этом кристаллы минералов (фосфорнокислый кальций, углекислый кальций и др.) импрегнируют органическую основу М. в. твердых скелетных тканей (дентин, кость). С возрастом М. в. претерпевает инволюционные изменения: меняется соотношение основного вещества и волокон - масса волокнистых структур коллагена и плотность его «упаковки» возрастают, а масса основного вещества уменьшается, происходят конденсация эластических волокон, глубокие физ.-хим. изменения М. в.

В эксперименте на животных выявлено, что недостаточное питание задерживает развитие возрастных изменений коллагена, а «атерогенная» диета вызывает его постарение.

Характером строения М. в. в значительной мере определяются функц, особенности тех или иных видов соединительной ткани. Чем плотнее М. в., тем сильнее выражена механическая, опорная функция, к-рая достигает наибольшего развития в костной ткани. Трофическая функция, напротив, лучше обеспечивается полужидким по консистенции М. в. (интерстициальная соединительная ткань, окружающая кровеносные сосуды).

Биохимия межклеточного вещества

Коллагеновые и эластические волокна, входящие в состав М. в., построены из склеропротеинов - коллагена (см.) и эластина (см.). Из коллагена состоят и ретикулиновые волокна (см. Аргирофильные волокна), отличающиеся повышенным содержанием углеводов и наличием липидов. В эластических волокнах имеется микрофибриллярный компонент, отличный от эластина по аминокислотному составу. Этот же компонент образует особую разновидность немногочисленных, сходных с эластическими волокнами М. в. (окситалановых), волокон резистентных к действию эластазы. Свойства основного вещества определяются преимущественно углеводно-белковыми биополимерами - гликозаминогликанами (см. Мукополисахариды) и гликопротеидами (см.). Наличие гликозаминогликанов придает основному веществу М. в. выраженную базофильность (см. Базофилия). Качественные и количественные соотношения этих биополимеров, отличающихся интенсивным метаболизмом, различны в разных видах соединительной ткани.

Склеропротеины, гликозаминогликаны и гликопротеиды М. в. синтезируются соединительнотканными клетками, но заключительные этапы «сборки» макромолекул, их агрегатов, образование волокон, а также процессы катаболизма протекают в М. в., в к-ром имеются необходимые для этого ферменты. При взаимодействии макромолекул М. в. происходит самосборка агрегатов возрастающей степени сложности. Вначале связываются гомотипические макромолекулы, затем происходит гетеротипическое взаимодействие - гликозаминогликаны соединяются с неколлагеновыми полипептидами, образуя протеогликаны и еще более сложные агрегаты, включающие гликопротеиды. На третичном уровне взаимодействия в состав агрегатов включаются волокна. Так создается упорядоченная супрамолекулярная структура М. в., специфичная для каждого вида соединительной ткани, от к-рой зависят ее физиол, и биомеханические свойства. Коллагеновые волокна обеспечивают устойчивость к растяжению. Трехмерная сеть электростатически заряженных, связывающих большое количество воды агрегатов протеогликанов создает устойчивость к сжатию, особо выраженную у хрящевой ткани (см.), избирательно задерживает катионы, создавая условия для минерализации кости (см.), регулирует диффузию белковых молекул. Стабильность супрамолекулярной организации М. в. является важным фактором регуляции биосинтезирующей активности соединительнотканных клеток. Во взаимодействии между М. в. и клетками, а также клеток между собой большая роль принадлежит углеводсодержащему белку фибронектину, располагающемуся в зоне соприкосновения клеток и М. в.

Компоненты М. в. вызывают хемотаксис клеток и таким образом участвуют в процессах морфогенеза.

Роль межклеточного вещества в патологии

При развитии патол, процессов в организме физ.-хим. свойства М. в., его проницаемость могут изменяться. Разнообразные изменения М. в., обеспечивающего транспортно-обменную функцию, связаны прежде всего с расстройством микроциркуляции (см.). При расстройствах крово- и лимфообращения на уровне микроциркуляторного русла, сопровождающихся венозным застоем и лимфостазом, развивается отек М. в., что связано с повышением сосудистой проницаемости (см.). При длительном отеке увеличивается количество коллагеновых волокон, что объясняется повышением синтеза коллагена фибробластами в условиях развивающейся гипоксии. Резкое повышение проницаемости микрососудов завершается диапедезными кровоизлияниями в М. в. (см. Кровоизлияние).

При нарушениях обмена соединительной ткани, т. е. мезенхимальных дистрофиях, в М. в. накапливаются продукты метаболизма, которые могут приноситься с кровью и лимфой, быть результатом патол, синтеза или появляться в результате деструкции основного вещества и волокон соединительной ткани. Расстройства обмена белков и гликозаминогликанов М. в. ведут к развитию мукоидного и фибриноидного набухания с образованием фибриноида (см. Фибриноидное превращение), что завершается гиалинозом (см.). Эти виды мезенхимальных диспротеинозов рассматриваются как последовательные стадии дезорганизации соединительной ткани при коллагеновых болезнях (см.). Расстройства обмена гликопротеидов М. в. приводят к слизистой дистрофии (см.). Наследственные нарушения обмена гликозаминогликанов М. в. проявляются так наз. болезнями накопления - мукополисахаридозами (см.), в т. ч. гаргоилизмом (см.). Наследственная несостоятельность основного вещества и волокнистых структур соединительной ткани лежит в основе болезни Марфана (см. Марфана синдром).

Как в М. в., так и в клетках соединительной ткани могут накапливаться липиды, особенно холестерин, что встречается при системных липидозах, в частности семейном гиперхолестеринемическом ксантоматозе. Появление в М. в. пигментов является признаком различных болезней и патол, процессов общего и местного характера. Так, общий гемосидероз (см.), развивающийся при накоплении гемосидерина в клетках и М. в., встречается при болезнях системы кроветворения (анемия, гемобластоз), интоксикациях гемолитическими ядами, некоторых инф. заболеваниях, переливаниях несовместимой крови, резус-конфликте и т. д., а местный гемосидероз - при кровоизлияниях, хрон, венозном застое в пределах органа, как это наблюдается, напр., при буром уплотнении легких (см.). Отложения порфиринов в М.в. скелетных тканей (кость, дентин) находят при врожденной порфирии (см.), меланина - в дерме при аддисоновой болезни (см.) и пигментной ксеродерме (см. Ксеродерма пигментная).

В М. в. могут выпадать соли мочевой кислоты, как это встречается при подагре (см.); соли кальция в М. в. появляются при кальцинозе (см.). В воспалительной реакции (см. Воспаление) М. в. принимает непосредственное участие; с ним связана экссудация в ткани и полости тела плазмы, миграция клеток крови и образование экссудата. В М. в. может образоваться воспалительный инфильтрат, возникать гранулемы при острых (брюшной и сыпной тифы) и хронических (бруцеллез, туберкулез, лепра, сифилис) инф. заболеваниях; развертываться местные аллергические реакции как немедленного, так и замедленного типа (см. Аллергия). М. в. - обязательный компонент многих опухолей (см.); в опухолях мягких тканей, костей и одонтогенных оно может преобладать над клеточными элементами. Для выявления патол, изменений М. в. широко используются методы гистохимии, иммунофлюоресценции, поляризационной и электронной микроскопии, рентгеноструктурного анализа и ауторадиографии.

Библиография: Давыдовский И. В., Общая патология человека, М., 1969; Мазуров В. И. Биохимия коллагеновых белков, М., 1974; Никитин В. Н., Перский Е. Э. и Утевская Л.. А, Возрастная и эволюционная биохимия коллагеновых структур, Киев, 1977; С е-ров В. В. и Пауков В. С. Ультраструктурная патология, с. 39, М., 1975, библиогр.; Слуцкий Л. И. Биохимия нормальной и патологически измененной соединительной ткани, Л., 1969; Фукс Б. Б. и Ф у к с Б.И. Очерки морфологии и гистохимии соединительной ткани, Л., 1968; X р у щ о в Н. Г. Функциональная цитохимия рыхлой соединительной ткани, М., 1969; Allgemeine Pathologie, hrsg. v. A., Hecht u. а., B., 1977; Chemistry and molecular biology of the intercellular matrix, ed. by E. A. Balazs, v. 1-3, L.-N. Y., 1970; C h v a p i 1 M. Physiology of connective tissue, L. - Prague, 1967; Fas-s b e n d e r H. G. Pathology of rheumatic diseases, B., 1975; Mathews М. В.. Connective tissue, macromolecular structure and evolution, B. - N. Y., 1975.

Ю. И. Афанасьев; В. В. Серов (пат. ан.), Л. И. Слуцкий (биохим.).

Инсулин способствует синтезу и накоплению жира в жировых клетках. При недостаточной выработке гормона (сахарный диабет) имеет место потеря веса.

Адреналин наоборот способствует распаду жира в жировых тканях.

Слизистая (студенистая) ткань имеется у зародыша в составе пупочного канатика. Характерно большое содержание гиалуроновой кислоты , что способствует сохранению высокого тургора ткани. Это важно для предотвращения перегиба пупочного канатика, возможного при родах.

Пигментная ткань . Это соединительнотканные участки области сосков, радужной и сосудистой оболочек глаза, родимых пятен, содержащие большое количество меланоцитов . Клетки имеют отростчатую или веретенообразную форму; в цитоплазме содержаться зерна пигмента – меланина .

Хрящевые ткани . Характерно большое содержание межклеточного вещества и обилие в нем воды (75 – 80%).

Компоненты:

− клетки и

− межклеточное вещество

Клетки хрящевых тканей:

− хондробласты и

− хондроциты.

Хондробласты – это малодифференцированные или молодые клетки хрящевых тканей. Имеют веретенообразную форму. Цитоплазма окрашивается базофильно. Хорошо развиты общие органеллы и особенно белоксинтезирующий аппарат – гранулярная эндоплазматическая сеть и комплекс Гольджи.

Функционально хондробласты осуществляют синтез основных компонентов межклеточного вещества – волокон и гликозамингликанов .

Хондроциты – зрелые хрящевые клетки. Цитоплазма слегка базофильная; ядра округлые, относительно большие. Для клеток характерен высокий внутренний тургор, из-за обилия воды. Клетки располагаются в зоне зрелого хряща чаще всего группами. Группы клеток (изогенные группы ) окружены базофильно окрашенной зоной, содержащей большую концентрацию гликозамингликанов (хондроитинсерной кислоты).

Функция хондроцитов заключается в поддержании состава межклеточного вещества, т.е. также синтезируют его компоненты, но в малых объемах.

Межклеточное вещество имеет в своем составе: волокна, молекулы гликозамингликанов, гликопротеидов и других белков. Тканевая жидкость составляет 75 – 80% межклеточного вещества. Она удерживается высокой концентрацией гликозамингликанов (хондроитинсерной кислоты) и потому представляет твердый материал.

Коллагеновые волокна в составе хрящевой ткани тоньше, чем в рыхлой соединительной и костной тканях (тип – II).

Виды хряща:

− гиалиновый;

− эластический и

− волокнистый

Гиалиновый хрящ .

Места локализации: суставные поверхности костей, реберные концы, стенка воздухоносных путей, грудина. Имеет молочно-матовый цвет.

Зоны гиалинового хряща:

− надхрящница;

− молодого хряща и

− зрелого хряща.

Надхрящница имеет два слоя:

1. Наружный , состоящий из плотной волокнистой соединительной ткани, где преобладают пучки коллагеновых волокон;

2. Внутренний (хондрогенный), который содержит меньше волокон, но много малодифференцированных клеток (хондробластов), сосудов и нервных окончаний.

За счет последнего слоя совершается аппозиционный рост и питание хряща.

Зона молодого хряща располагается под надхрящницей. Одиночные хрящевые клетки (хондробласты) ориентированы по длинной оси хряща. Межклеточное вещество окрашивается оксифильно или слабо базофильно (на границе с зоной зрелого хряща).

Зона зрелого хряща . Хрящевые клетки (хондроциты) располагаются группами – изогенные группы . Непосредственно вокруг них – резко базофильная зона. Она ограничивает группы (клеточные территории) от остальных участков межклеточного вещества (интертерриторией), которые окрашиваются менее базофильно. В межклеточном веществе пучки коллагеновых (хондриновых) волокон, которые на препаратах не выявляются (пропитаны основным аморфным веществом) не имеют определенной ориентации (Рис. 7). Здесь обнаруживается и участки дегенерации с отложением солей извести – участки омеления . Последние являются следствием недостаточного поступления питательных веществ, особенно в глубокие участки хряща.

а – Молодые хрящевые клетки

б – Межклеточные вещество хряща

е – Изогенная группа

Как отмечалось, хрящ – не сосудистая ткань. Питание совершается путем диффузии со стороны надхрящницы, где имеются сосуды. Этому способствует обилие воды (75 – 80%) в межклеточном веществе, которая удерживается молекулами гликозамингликанов. По этой причине (отсутствие сосудов) хрящ, как трансплантат, хорошо приживается. Следует отметить, что хорошо приживается не только аутотрансплантат, но и гомотрансплантат (от одного к другому). Эта уникальная способность зависит от наличия плотного межклеточного вещества, которое препятствует проникновению чужеродных антигенов хондроцитов трансплантата к иммунокомпетентным клеткам хозяина.

Эластический хрящ . Это хрящи ушной раковины, надгортанника, слуховой трубы, рожковидные и клиновидные гортани. Общий принцип его строения такой же, как у гиалинового хряща (Рис. 8).


1. Надхрящница

3. Сеть эластических волокон

5. Изогенная группа

6. Хрящевые клетки

Отметим лишь особенности:

1. В межклеточном веществе густая сеть эластических волокон;

2. Изогенные группы меньше по размерам (меньше клеток) и они располагаются в виде поперечных столбиков;

3. Не подвергается обызвествлению (отложению солей извести).

Волокнистый хрящ присутствует в межпозвонковых дисках, области лонного сочленения, а также в местах перехода сухожилий в гиалиновый хрящ (места прикрепления мышц к костной ткани). По строению он занимает промежуточное положение между сухожилием и гиалиновым хрящом. Со стороны сухожилия пучки коллагеновых волокон разрыхляются, теряют строгую ориентацию. Между ними клетки располагаются и в одиночку, и группами. Вокруг клеточных групп сохраняется базофильная зона. Межклеточное вещество окрашивается оксифильно.

Костная ткань

Характерные признаки:

− очень плотное межклеточное вещество;

− в межклеточном веществе много минеральных солей.

Компоненты костной ткани :

− клетки (остеобласты, остеоциты, остеокласты);

− межклеточное вещество.

Остеобласты располагаются в составе надкостницы, а также на поверхности растущей или развивающейся кости в виде одного слоя плоских или кубических клеток. Цитоплазма окрашивается базофильно. Хорошо развита гранулярная эндоплазматическая сеть. Клетки богаты щелочной фосфатазой (гидролитический фермент), расщепляющей эфиры фосфорной кислоты. Функция клеток связана с образованием компонентов межклеточного вещества.

Предшественники остеобластов – остеогенные клетки.

Остеоциты – отростчатые клетки, располагаются в специальных полостях – лакунах , которые связаны между собой канальцами. Причем тела клеток располагаются в лакунах, а отростки – в канальцах. Цитоплазма окрашивается слабо базофильно.

Функции остеоцитов :

− поддерживают состав межклеточного вещества;

− осуществляют транспорт питательных веществ из крови в костную ткань и продуктов обмена в обратном направлении;

− участвуют в регуляции солевого обмена путем освобождения ионов Са, Р и др.

Остеокласты . Это гигантские многоядерные клетки размерами 90 мкм и более. Количество ядер чаще 15 – 20. Поверхность клеток неровная, характерно наличие зазубрин, которые вдаются в межклеточное вещество. Цитоплазма окрашивается оксифильно, содержит много лизосом, особенно в периферической зоне.

Функционально – это макрофаги костной ткани, образуются путем слияния моноцитов (макрофагов), т.е. являются клетками гематогенного происхождения. Клетки своими гидролитическими ферментами, которые освобождаются из лизосом, разрушают (резорбируют) межклеточное вещество с освобождением ионов. Следует отметить, что процессы образования новой костной ткани и ее разрушение идут параллельно, тем самым поддерживая баланс ионов в плазме крови.

Межклеточное вещество

Компоненты:

− органический матрикс (33%) и

− неорганические соли (67%).

В состав органического матрикса входят коллагеновые волокна и основное аморфное вещество.

Коллагеновые волокна – типичные, характерные для рыхлой соединительной ткани. Располагаются или строго ориентировано – в пластинчатой костной ткани, или без определенной ориентации – в грубоволокнистой костной ткани.

Основное аморфное вещество состоит из белково-полисахаридных комплексов (гликозамингликанов, гликопротеидов и др.) и тканевой жидкости. В его составе хондроитинсерной серной кислоты меньше чем в хрящевой ткани. По этой причине костный матрикс красится оксифильно .

Неорганическая часть межклеточного вещества образована кристаллами гидроксиапатита (Са 10 (РО 4) 6 (ОН) 2). Они откладываются в форме тонких игл на поверхности коллагеновых волокон строго определенным образом. Этим определяется высокая механическая прочность кости. Кроме того в состав неорганической части входят цитратные (С 6 Н 5 О 7) и карбонатные (СО 3) ионы.

Виды костной ткани :

− грубоволокнистая и

− пластинчатая.

Грубоволокнистая костная ткань образует кости у зародышей. У взрослых она имеется лишь в области черепных швов. Характерно наличие грубых пучков коллагеновых волокон, которые не имеют определенной ориентации и пропитаны основным аморфным веществом. Между пучками волокон в костных полостях (лакунах) располагаются костные клетки (остеоциты).

Пластинчатая костная ткань . Этой тканью образованы почти все кости у взрослых. Ее структурной единицей являются костные пластинки (толщина – 5 – 10 мкм).

Каждая пластинка образована пучками коллагеновых волокон, имеющих строго определенную ориентацию. На поверхности или внутри пластинок в костных полостях располагаются остеоциты.

Из пластинчатой костной ткани состоят и губчатая и компактная кости.

Губчатая кость имеется в эпифизах трубчатых костей. Здесь костные пластинки образуют балки, перекладины, т.е. нет строгой их ориентации.

Компактная кость . Ее строение следует разобрать на примере диафиза трубчатых костей (Рис. 9).

а – Гаверсов канал

г – Костные канальцы

  1. Вставочная система пластинок

Он целиком образован костными пластинками, которые откладываются в различных формах:

1. Наружный слой генеральных пластинок . Располагается под надкостницей и представляет из себя концентрически вложенных друг в друга цилиндров из костных пластинок (Рис. 10).

2. Средний слой образован системой остеонов . Каждый остеон состоит из концентрически вложенных друг в друга цилиндров из костных пластинок вокруг центрального канала (Гаверсов канал), где располагаются сосуды (артериолы и венулы). В каждой пластинке ориентация коллагеновых волокон различная. В костных полостях (лакунах) пластинок располагаются остеоциты. От лакун радиально во всех направлениях отходят трубочки, которые связаны канальцами лакун соседних пластинок. В результате лакуны всех пластинок, так или иначе связаны между собой.

А. Надкостница.

Б. Компактное вещество трубчатой

Г. Эндост

  1. Внутренняя система генеральных пластинок
  1. Вставочная система пластинок

7. Наружная система генеральных

пластинок

Образуя лакуно-канальцевую системы, где циркулирует тканевая жидкость вместе с растворенными веществами. Таким образом, лакуно-канальцевая система, связанная в свою очередь с кровеносными сосудами, служит системой питания всей костной ткани.

Между остеонами располагается система вставочных пластинок – это расположенные параллельно друг к другу костные пластинки, являющиеся остатками бывших остеонов (остеоны, как и вся костная ткань, постоянно разрушаются и образуются вновь).

8. Внутренний слой генеральных пластинок также состоит из концентрически вложенных друг в друга цилиндров из костных пластинок вокруг костномозгового канала. Имеет диаметр – 0,4 мм.

Надкостница имеет 2 слоя:

− наружный (волокнистый) – образован плотной волокнистой неоформленной соединительной тканью;

− внутренний (остеогенный ) – образован рыхлой соединительной тканью, где много остеобластов и сосудов.

Важна роль надкостницы в питании кости (за счет сосудов), а также в ее росте в толщину (аппозиционный рост ) и регенерации.

Рост трубчатых костей в длину совершается за счет эпифизарных хрящевых пластинок роста, которые исчезают к 20 годам.

Вверх